NEW STRUCTURE PROPERTIES OF FLEXIBLE Q-FUZZY GROUPS
AND FLEXIBLE NORMAL Q-FUZZY SUBGROUPS

Dr. GEETHALAKSHMI MANICKAM*1 AND Dr. A. SOLAI RAJU2

1Lecturer in Mathematics,
Department of General Requirements,
College of Applied Sciences-Nizwa, Sultanate of Oman.

2Associate Professor in Mathematics,
PG & Research Department of mathematics,
Jamal Mohamed College, Tiruchirappalli, 20, India.

(Received On: 17-06-2020; Revised & Accepted On: 02-07-2020)

ABSTRACT

The study introduces the further concept of flexible fuzzy set and flexible Q-fuzzy subset. Based on this, the further
concept of flexible fuzzy group and flexible normal Q-fuzzy subgroups are given, using these definitions some
elementary properties are discussed and derived. We shall also extend some results on this paper.

Keywords: Fuzzy set, flexible fuzzy subset, flexible Q-fuzzy subset, flexible Q-fuzzy group and flexible Q-fuzzy normal
subgroups.

SECTION-1: INTRODUCTION

Zadeh (1965) first introduced the fuzzy set concepts and fuzzy set operations. Rosenfeld (1971) then introduced the
elementary concepts of fuzzy subgroups, which was the first fuzzification of any algebraic structures. Motivated by this
many mathematicians started to review the various concepts and a notion of different fuzzy algebraic structures such as
fuzzy ideal in both ring and semi ring etc. Zadeh (1975) introduced the concepts of interval-valued fuzzy set, where the
values of member instead of the real points. Motivated by this, Zadeh’s definition has been generalized by Anthony and
Sherwood (1979). They introduced the concept of fuzzy normal subgroup. Also Mukherjee and Bhattacharya (1986)
studied the normal fuzzy groups and fuzzy cosets. On the other hand, the notion of a fuzzy subgroup abelian group was
introduced by Murali and Makamba [2006], who counted the number of fuzzy subgroups in an abelian group of order
p^nq where p, n, q are positive integers. On the other, Solairaju and Natarajan (2011) have introduced the notion of
Q-fuzzy subgroups and upper Q-fuzzy order. In this study, based on the reference of Sarangapani and Muruganantham
(2016) the concept of flexible Q-fuzzy groups and flexible normal Q-fuzzy groups are given and some of its elementary
properties are discussed and derived. Throughout this paper, G denotes the group and e denotes the identity element of G

SECTION-2: PRELIMINARIES AND DEFINITIONS

The basic definitions and notations are presented now in a flexible Q-fuzzy group.

2.1 Definition: Let X be a set. Then the mapping X: G → [0, 1] is called a fuzzy subset of X

2.2 Definition: For any Q-fuzzy set A in a group G and t Є [0, 1], the set U (A: t) ={x Є G: A(x, q) ≥ t, for all q Є Q}
which is called a cut-set of A.

2.3 Definition: Let G be a group. A mapping A: G → [0, 1] is a fuzzy group of G if
(1). A(xy) ≤ max{A(x), A(y)}; (2). A(x⁻¹) ≤ A(x) for all x, y Є G.
2.4 Definition: The Q-fuzzy set A is called Q-fuzzy group of G if (QFG1): A(xy, q) ≥ min{A(x, q), A(y, q)}; (QFG2): A(x⁻¹, q) = A(x, q); (QFG3): A(x, q) = 1 for all x, y ∈ G and q ∈ Q.

2.5 Theorem: If μ is a Q-fuzzy group of a group G having identity e, then (i) μ(x⁻¹, q) = μ(x, q) and (ii) μ(e, q) ≤ μ(x, q) for all x, y ∈ G.

2.6 Definition: Let μ be any Q-fuzzy group of G. Then μ is called a Q-fuzzy normal group if μ(xy, q) = μ(yx, q) for all x, y ∈ G.

2.7 Definition: Let X be a set. Then a mapping μ: X × Q → Q*([0, 1]) is called flexible fuzzy subset of X, where Q*([0, 1]) denotes the set of all non-empty subsets of the interval [0,1].

2.8 Definition: Let X be a non-empty set and M, N be two flexible Q-fuzzy subsets of X. Then the intersection of M and N denoted by (M ∩ N) and is defined by M ∩ N = {min {a, b}/ a ∈ M(x), b ∈ N(x)} for all x ∈ X. The union of M and N denoted by (M ∪ N) and is defined by M ∪ N = {max {a, b}/ a ∈ M(x), b ∈ N(x)} for all x ∈ X.

2.9 Definition: Let X be a groupoid (it is a set which is closed under a binary relation, multiplicatively). A mapping is called a flexible Q-fuzzy groupoid if the following conditions are hold: \(\inf \mu(xy, q) \geq T(\inf \mu(x, q), \inf \mu(y, q)) \) and \(\sup \mu(xy, q) \geq T(\sup \mu(x, q), \sup \mu(y, q)) \) for all x, y ∈ X.

2.10 Definition: Let G be any group. A mapping μ: G × Q → Q*([0, 1]) is called a flexible Q-fuzzy group of G if the following conditions are hold: (1). \(\inf \mu(xy, q) \geq T(\inf \mu(x, q), \inf \mu(y, q)) \); (2). \(\sup \mu(xy, q) \geq T(\sup \mu(x, q), \sup \mu(y, q)) \); (3). \(\inf \mu(x⁻¹, q) \geq \inf \mu(x, q) \); (4). \(\sup \mu(x⁻¹, q) \geq \sup \mu(x, q) \) for all x, y ∈ G.

2.11 Example: Let G = {e, p, q, r} be the Klein’s four group. We define the multiplication in a group G as follows:

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>p</th>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>q</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>q</td>
</tr>
<tr>
<td>r</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>e</td>
</tr>
</tbody>
</table>

Then (G, •) is a group. Define a flexible of fuzzy subset \(\mu: G \rightarrow Q*([0, 1]) \) by \(\mu(e) = 0.75 \), \(\mu(p) = 0.25 \), \(\mu(q) = 0.25 \), \(\mu(r) = 0.75 \). Then \(\mu \) is a flexible of fuzzy subgroup of G.

2.12 Note: In definition * if \(\mu: G \rightarrow \mathbb{Q}[0, 1] \), then \(\mu(x, q) \) for all x ∈ G are real points in [0, 1] and also \(\inf \mu(x, q) = \sup \mu(x, q) = \mu(x, q), x \in G \) and q in Q. Thus definition * reduces to definition of Rosenfeld’s fuzzy group. So a flexible fuzzy subgroup is a generalization of Rosenfeld’s fuzzy group.

SECTION-3: PROPERTIES OF FLEXIBLE Q-FUZZY GROUPS

Some properties and the basic results are presented now in a flexible Q-fuzzy group

3.1 Theorem: A flexible Q-fuzzy subset \(\mu \) of a group G is a flexible Q-fuzzy group if and only if the following conditions are hold.

1. \(\inf \mu(xy⁻¹, q) \geq T(\inf \mu(x, q), \inf \mu(y, q)) \) and
2. \(\sup \mu(xy⁻¹, q) \geq T(\sup \mu(x, q), \sup \mu(y, q)) \) for all x, y ∈ G.
Proof: Let \(\mu \) be a flexible \(Q \)-fuzzy group of \(G \) and \(x, y \in G \). Then it follows that
\[
\inf \mu(xy^{-1}, q) \geq T\{\inf \mu(x, q), \inf \mu(y^{-1}, q)\}
\]
\[
= T\{\inf \mu(x, q), \inf \mu(y, q)\} \quad \text{and}
\]
\[
\sup \mu(xy^{-1}, q) \geq T\{\sup \mu(x, q), \sup \mu(y, q)\}
\]
\[
= T\{\sup \mu(x, q), \sup \mu(y, q)\}.
\]

Conversely: Let \(\mu \) be a flexible \(Q \)-fuzzy subset of \(G \) and given conditions hold. Then it follows that
\[
\inf \mu(e, q) = \inf \mu(x, q) \geq T\{\inf \mu(x, q), \inf \mu(x, q)\} = \inf \mu(x, q) \quad \text{----- (1)}.
\]
\[
\sup \mu(e, q) = \sup \mu(x, q) \geq T\{\sup \mu(x, q), \sup \mu(x, q)\} = \sup \mu(x, q) \quad \text{----- (2) for all } x \in G.
\]
It implies that
\[
\inf \mu(x^{-1}, q) = \inf \mu(ex^{-1}, q) \geq T\{\inf \mu(x, q), \inf \mu(x, q)\} = \inf \mu(x, q) \quad \text{by (1)}
\]
and
\[
\sup \mu(x^{-1}, q) = \sup \mu(ex^{-1}, q) \geq T\{\sup \mu(x, q), \sup \mu(x, q)\} = \sup \mu(x, q) \quad \text{by (2)}.
\]
So
\[
\inf \mu(xy, q) \geq T\{\inf \mu(x, q), \inf \mu(y^{-1}, q)\} \geq T\{\inf \mu(x, q), \inf \mu(y, q)\}.
\]
\[
\sup \mu(xy, q) \geq T\{\sup \mu(x, q), \sup \mu(y^{-1}, q)\} \geq T\{\sup \mu(x, q), \sup \mu(y, q)\}.
\]
Thus \(\mu \) is a flexible \(Q \)-fuzzy group of \(G \).

3.2 Theorem: If \(\mu \) is a flexible \(Q \)-fuzzy groupoid of an infinite group \(G \), \(\mu \) is a flexible \(Q \)-fuzzy group of \(G \).

Proof: Let \(x \) be any element in a group \(G \). Since \(G \) is finite, \(x \) has finite order, say \(p \). then \(x^p = e \), where ‘\(e \)’ is the identity element of \(G \).
Thus \(x^{-1} = x^{p-1} \) using the definition of flexible \(Q \)-fuzzy groupoid, it follows that
\[
\inf \mu(x^{-1}, q) = \inf \mu(x^p, q) = \inf \mu(x, q) \geq T\{\inf \mu(x^p, q), \mu(x, q)\}
\]
Again
\[
\inf \mu(x^{p-2}, q) = \inf \mu(x^{p-3}, x, q) \geq T\{\inf \mu(x^{p-3}, q), \mu(x, q)\}
\]
Then we have
\[
\inf \mu(x^{-1}, q) \geq T\{\inf \mu(x^{p-3}, q), \inf \mu(x, q)\}.
\]
So applying the definition of flexible of \(Q \)-fuzzy groupoid repeatedly, \(\inf \mu(x^{-1}, q) \leq \inf \mu(x, q) \).
Similarly it gives that \(\sup \mu(x^{-1}, q) \leq \sup \mu(x, q) \). Therefore \(\mu \) is a flexible \(Q \)-fuzzy group.

3.3 Theorem: The intersection of any two flexible \(Q \)-fuzzy groups is also a flexible \(Q \)-fuzzy group of \(G \).

Proof: Let \(A \) and \(B \) be any two flexible \(Q \)-fuzzy groups of \(G \) and \(x, y \in G \). Then
\[
\inf (A \cap B)(xy^{-1}, q) = T\{\inf A(xy^{-1}, q), \inf B(xy^{-1}, q)\}
\]
\[
\geq T\{\{\inf A(x, q), \inf A(x, q)\}, \{\inf B(x, q), \inf B(y, q)\}\}
\]
\[
= T\{\inf A(x, q), \inf B(x, q), \inf A(x, q), \inf B(y, q)\} \quad \text{----- (1)}.
\]
\[
\sup (A \cap B)(xy^{-1}, q) = T\{\sup A(xy^{-1}, q), \sup B(xy^{-1}, q)\} \quad \text{by definition}
\]
\[
\geq T\{\sup A(x, q), \sup A(x, q), \sup B(x, q), \sup B(y, q)\}\}
\]
\[
= T\{\sup A(x, q), \sup B(x, q), \sup A(x, q), \sup B(y, q)\} \quad \text{----- (2)}.
\]
Therefore by (1) and (2) and using theorem 3.1
It gets that \((A \cap B) \) is a flexible \(Q \)-fuzzy group of \(G \).
3.5 Theorem: If A is a flexible Q-fuzzy group of a group G having identity e, then for all \(x \in X \) we have

1. \(\inf A(x^{-1}, q) = \inf A(x, q) \),
2. \(\sup A(x^{-1}, q) = \sup A(x, q) \).
3. \(\inf A(e, q) = \inf A(x, q) \),
4. \(\sup A(e, q) = \sup A(x, q) \).

Proof: (i) If A is a Q-fuzzy group of a group G, then it gets that \(\inf A(x^{-1}, q) \leq \inf A(x, q) \).

Again \(\inf A(x, q) = \inf A((x^{-1})^{-1}, q) \leq \inf A(x^{-1}, q) \). Therefore \(\inf A(x^{-1}, q) = \inf A(x, q) \).

Similarly it can prove that \(\sup A(x^{-1}, q) = \sup A(x, q) \).

\[\inf A(e, q) = \inf A(xx^{-1}, q) \geq T(\inf A(x, q), \inf A(x^{-1}, q)) \]
and \(\sup A(e, q) = \sup A(xx^{-1}, q) \geq T(\sup A(x, q), \sup A(x^{-1}, q)) \).

3.6 Theorem: Let \(\mu \) and \(\lambda \) be two flexible Q-fuzzy group of \(G_1 \) and \(G_2 \) respectively, and \(f \) be a homomorphism from \(G_1 \) to \(G_2 \). Then \(f(\mu, q) \) is a flexible Q-fuzzy group of \(G_2 \) and \(f(\lambda, q) \) is a flexible of Q-fuzzy group of \(G_1 \).

Proof: It is straightforward.

3.7 Remark: If \(\mu \) is flexible Q-fuzzy group of \(G \) and \(K \) is subgroup of \(G \), then the restriction of \(\mu \) to \(K(\mu/K) \) is a flexible Q-fuzzy group of \(K \).

SECTION-4: NORMAL FLEXIBLE OF Q-FUZZY GROUP

The basic results and properties are presented now in a normal flexible Q-fuzzy group.

4.1 Definition: If \(\mu \) is a flexible Q-fuzzy group of a group G, then \(\mu \) is called a normal flexible Q-fuzzy group of G if \(\inf \mu(xy, q) = \inf \mu(yx, q) \) and \(\sup \mu(xy, q) = \sup \mu(yx, q) \) for all \(x, y \in G \).

4.2 Definition: Let \(\mu \) be a flexible of fuzzy subgroup of G. For any \(x \) in G and the smallest positive integer \(n \) such that \(\mu(x^n) = \mu(e) \) is called a flexible fuzzy order of \(x \). If there does not exist such \(n \), then \(x \) is said to have an infinite flexible fuzzy order. We shall denote flexible fuzzy order of \(x \) by \(O(\mu(x)) \).

4.3 Example: Let \(G = \{e, p, q, pq\} \) be the Klein’s four group and let \(\mu = \{(e, 0.25), (p, 0.75), (q, 0.75), (pq, 0.25)\} \) be a flexible of fuzzy group. Then \(O(\mu(pq)) = 1 \) and \(O(\mu(p)) = 2 \).

4.4 Theorem: The intersection of any two normal flexible Q-fuzzy groups of G is also a normal flexible Q-fuzzy group of G.

Proof: Let A and B be any two normal flexible Q-fuzzy groups of G. Then \(A \cap B \) is a flexible Q-fuzzy group of G.

Let x, y be any two elements in a group G. Then, by definition

\[\inf (A \cap B)(xy, q) = T(\inf A(xy, q), \inf B(xy, q)) \]
\[\sup (A \cap B)(xy, q) = T(\sup A(xy, q), \sup B(xy, q)) \]
\[= T(\inf A(x, q), \inf B(y, q)) \]
\[= \inf A \cap B(y, q). \]

Similarly \(\sup (A \cap B)(xy, q) = \sup (A \cap B)(yx, q) \).

This shows that \(A \cap B \) is normal flexible Q-fuzzy group of G.

4.5 Theorem: The intersection of any arbitrary collection of normal flexible Q-fuzzy groups of a group G is also a normal flexible Q-fuzzy group of G.

Proof: Let x, y be any two elements in a group G and \(a \) in G. Then,

\[\inf A(xy^{-1}, q) = \inf A(a^{-1}xy^{-1}a, q) \]
\[= \inf A(a^{-1}xa^{-1}y^{-1}a, q) \]
\[= \inf (A(a^{-1}xa, q), A((a^{-1}ya)^{-1}, q)) \]
\[\geq T(\inf (A(a^{-1}xa, q), \inf A(a^{-1}ya, q))) \]
\[= T(\inf (A(x, q), A(y, q))). \]
sup A(xy⁻¹, q) = sup A(α⁻¹xy⁻¹α, q) by definition
= sup A(α⁻¹xα⁻¹y⁻¹α, q)
= sup (A(α⁻¹xa, q), A((α⁻¹ya)⁻¹, q))
≥ T{sup (A(α⁻¹xa, q), supA(α⁻¹ya), q))
= T{sup (A(x, q),A(y, q))}.

It follows that A is normal flexible Q-fuzzy group of G.

CONCLUSION

In this study we introduced, the concept of flexible fuzzy set and a flexible Q-fuzzy group. Based on this flexible Q-fuzzy normal groups are given and its some elementary properties are discussed. Some properties are derived.

REFERENCES

Source of Support: Nil, Conflict of interest: None Declared

[Copy right © 2020, RJPA. All Rights Reserved. This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]