ON SKOLEM MEAN LABELING FOR FOUR STAR

V. BALAJI¹, D. S. T. RAMESH² and S. RAMARAO³

²Department of Mathematics, Margoschis College, Nazareth - 628617, India.
¹,³Department of Mathematics, Sacred Heart College, Tirupattur - 635 601, India.

(Received On: 11-12-15; Revised & Accepted On: 13-01-16)

ABSTRACT

In this paper, we prove the conjecture that the four star $K_{1,1} \cup K_{1,1} \cup K_{1,m} \cup K_{1,n}$ is a skolem mean graph if $|m-n|<7$ for $m-6 \leq n \leq m$ and $1 \leq m \geq n$.

Keywords: Skolem mean graph and star.

2010 Mathematical Subject Classification Number: 05C78.

1. INTRODUCTION

All graphs in this chapter are finite, simple and undirected. Terms not defined here are used in the sense of Harary [8]. In [2], we proved that the three star $K_{1,\ell} \cup K_{1,m} \cup K_{1,n}$ is a skolem mean graph if $|m-n|=4+\ell$ for $\ell=1,2,3,...$, $m=1,2,3,...$, $n=\ell+m+4$ and $\ell\leq m<n$; the three star $K_{1,\ell} \cup K_{1,m} \cup K_{1,n}$ is not a skolem mean graph if $|m-n|>4+\ell$ for $\ell=1,2,3,...$, $m=1,2,3,...$, $n\geq \ell+m+5$ and $\ell\leq m<n$; the four star $K_{1,\ell} \cup K_{1,m} \cup K_{1,n}$ is a skolem mean graph if $|m-n|=4+2\ell$ for $\ell=2,3,4,...$, $m=2,3,4,...$, $n=2\ell+m+4$ and $\ell\leq m<n$; the four star $K_{1,\ell} \cup K_{1,m} \cup K_{1,n}$ is not a skolem mean graph if $|m-n|>4+2\ell$ for $\ell=2,3,4,...$, $m=2,3,4,...$, $n=2\ell+m+5$ and $\ell\leq m<n$; the four star $K_{1,\ell} \cup K_{1,m} \cup K_{1,n}$ is a skolem mean graph if $|m-n|=7$ for $m=1,2,3,...$, $n=m+7$ and $1\leq m<n$. Also, the four star $K_{1,\ell} \cup K_{1,m} \cup K_{1,n}$ is a skolem mean graph if $|m-n|>7$ for $m=1,2,3,...$, $n\geq m+8$ and $1\leq m<n$. In [3], the necessary condition for a graph to be skolem mean is that $p\geq q+1$.

2. SKOLEM MEAN LABELING

Definition 2.1: The four star is the disjoint union of $K_{1,a}$, $K_{1,b}$, $K_{1,c}$ and $K_{1,d}$. It is denoted by $K_{1,a} \cup K_{1,b} \cup K_{1,c} \cup K_{1,d}$.

Corresponding Author: V. Balaji
¹,³Department of Mathematics, Sacred Heart College, Tirupattur - 635 601, India.
Definition 2.2 [2]: A graph \(G = (V, E) \) with \(p \) vertices and \(q \) edges is said to be a skolem mean graph if there exists a function \(f \) from the vertex set of \(G \) to \(\{1, 2, 3, \ldots, p\} \) such that the induced map \(f^* \) from the edge set of \(G \) to \(\{2, 3, 4, \ldots, p\} \) defined by

\[
 f^*(e=uv) = \begin{cases}
 \frac{f(u)+f(v)}{2} & \text{if } f(u)+f(v) \text{ is even} \\
 \frac{f(u)+f(v)+1}{2} & \text{if } f(u)+f(v) \text{ is odd, then}
\end{cases}
\]

the resulting edges get distinct labels from the set \(\{2, 3, 4, \ldots, p\} \).

Note 2.3: In a skolem mean graph, \(p \geq q + 1 \).

Theorem 2.4: If \(1 \leq m \leq n \), the four star \(K_{1,1} \cup K_{1,1} \cup K_{1,m} \cup K_{1,n} \) is a skolem mean graph if \(|m-n| < 7 \) for \(n = 1, 2, 3, \ldots \) and \(m-6 \leq n \leq m \).

Proof:

Case (a) Consider the graph \(G = K_{1,1} \cup K_{1,1} \cup K_{1,m} \cup K_{1,n} \) when \(n = m \). Let us consider the case that \(|m-n| < 7 \) for \(n = 1, 2, 3, \ldots \). We have to prove that \(G \) is a skolem mean graph.

We have \(V(G) = \{u, u_1\} \cup \{v, v_1\} \cup \{w_i : 1 \leq i \leq m\} \cup \{x_j : 1 \leq j \leq n\} \) and
\[
 E(G) = \{uu_1, vv_1\} \cup \{ww_i : 1 \leq i \leq m\} \cup \{xx_j : 1 \leq j \leq n\}.
\]

Then \(G \) has \(m + n + 6 \) vertices and \(m + n + 2 \) edges.

The required vertex labeling \(f : V(G) \to \{1, 2, 3, 4, \ldots, m+n+6\} \) is defined as follows:

\[
 f(u) = 1; \ f(v) = 5; \ f(w) = m+n+5; \ f(x) = 3; \\
 f(u_1) = 9; \\
 f(v_1) = 7; \\
 f(w_i) = 2i \quad \text{for } 1 \leq i \leq m; \\
 f(x_j) = 2j+9 \quad \text{for } 1 \leq j \leq n
\]

The corresponding edge labels are as follows:

The edge label of \(uu_1 \) is 5; \(vv_1 \) is 6; \(ww_i \) is \(\frac{m+n+2i+5}{2} \) for \(1 \leq i \leq m \) and \(xx_j \) is \(j+6 \) for \(1 \leq j \leq n \).

Hence the induced edge labels of \(G \) are distinct.

Hence the graph \(G \) is skolem mean graph.

Case-(b): Consider the graph \(G = K_{1,1} \cup K_{1,1} \cup K_{1,m} \cup K_{1,n} \) when \(n = m-1 \). Let us consider the case that \(|m-n| < 7 \) for \(n = 1, 2, 3, \ldots \). We have to prove that \(G \) is a skolem mean graph.

We have \(V(G) = \{u, u_1\} \cup \{v, v_1\} \cup \{w_i : 1 \leq i \leq m\} \cup \{x_j : 1 \leq j \leq n\} \).
\[
 E(G) = \{uu_1, vv_1\} \cup \{ww_i : 1 \leq i \leq m\} \cup \{xx_j : 1 \leq j \leq n\}.
\]

Then \(G \) has \(m + n + 6 \) vertices and \(m + n + 2 \) edges.
The required vertex labeling \(f : V(G) \rightarrow \{1, 2, 3, 4, \ldots, m+n+6\} \) is defined as follows:
\[
\begin{align*}
 &f(u)=1; f(v)=2; f(w)=m+n+5; f(x)=4; \\
 &f(u_1)=6; \\
 &f(v_1)=8; \\
 &f(w_i)=2i+1 \quad \text{for } 1 \leq i \leq m; \\
 &f(x_j)=2j+8 \quad \text{for } 1 \leq j \leq n
\end{align*}
\]

The corresponding edge labels are as follows:

The edge label of \(uu_1 \) is 4; \(vv_1 \) is 5; \(ww_i \) is \(\frac{m+n+2i+6}{2} \) for \(1 \leq i \leq m \) and \(xx_j \) is \(j+6 \) for \(1 \leq j \leq n \).

Hence the induced edge labels of G are distinct.

Hence the graph G is skolem mean graph.

Case-(c): Consider the graph \(G=K_{1,1} \cup K_{1,1} \cup K_{1,m} \cup K_{1,n} \) when \(n=m-2 \). Let us consider the case that \(|m-n|<7 \) for \(n=1, 2, 3, \ldots \) We have to prove that G is a skolem mean graph.

We have \(V(G)=\{u,u_1\} \cup \{v,v_1\} \cup \{w:1 \leq i \leq m\} \cup \{x:1 \leq j \leq n\} \),
\(E(G)=\{uu_1,vv_1\} \cup \{ww_i:1 \leq i \leq m\} \cup \{xx_j:1 \leq j \leq n\} \).

Then G has \(m+n+6 \) vertices and \(m+n+2 \) edges.

The required vertex labeling \(f : V(G) \rightarrow \{1, 2, 3, 4, \ldots, m+n+6\} \) is defined as follows:
\[
\begin{align*}
 &f(u)=1; f(v)=3; f(w)=m+n+5; f(x)=5; \\
 &f(u_1)=2; \\
 &f(v_1)=7; \\
 &f(w_i)=2i+2 \quad \text{for } 1 \leq i \leq m; \\
 &f(x_j)=2j+7 \quad \text{for } 1 \leq j \leq n
\end{align*}
\]

The corresponding edge labels are as follows:

The edge label of \(uu_1 \) is 2; \(vv_1 \) is 5; \(ww_i \) is \(\frac{m+n+2i+7}{2} \) for \(1 \leq i \leq m \) and \(xx_j \) is \(j+6 \) for \(1 \leq j \leq n \).

Hence the induced edge labels of G are distinct.

Hence the graph G is skolem mean graph.

Case-(d): Consider the graph \(G=K_{1,1} \cup K_{1,1} \cup K_{1,m} \cup K_{1,n} \) when \(n=m-3 \). Let us consider the case that \(|m-n|<7 \) for \(n=1, 2, 3, \ldots \) We have to prove that G is a skolem mean graph.

We have \(V(G)=\{u,u_1\} \cup \{v,v_1\} \cup \{w:1 \leq i \leq m\} \cup \{x:1 \leq j \leq n\} \),
\(E(G)=\{uu_1,vv_1\} \cup \{ww_i:1 \leq i \leq m\} \cup \{xx_j:1 \leq j \leq n\} \).
Then G has $m+n+6$ vertices and $m+n+2$ edges.

The required vertex labeling $f: V(G) \to \{1, 2, 3, 4, \ldots, m+n+6\}$ is defined as follows:

$\begin{align*}
 f(u) &= 1; f(v) = 2; f(w) = m+n+5; f(x) = 6; \\
 f(u_i) &= 3; \\
 f(v_i) &= 4; \\
 f(w_i) &= 2i+3 \text{ for } 1 \leq i \leq m; \\
 f(x_j) &= 2j+6 \text{ for } 1 \leq j \leq n.
\end{align*}$

The corresponding edge labels are as follows:

The edge label of uu_i is 2; vv_i is 3; ww_i is $\frac{m+n+2i+9}{2}$ for $1 \leq i \leq m$ and xx_j is $j+5$ for $1 \leq j \leq n$.

Hence the induced edge labels of G are distinct.

Hence the graph G is skolem mean graph.

Case-(e): Consider the graph $G = K_{i,1} \cup K_{i,1} \cup K_{1,m} \cup K_{1,n}$ when $n = m-4$. Let us consider the case that $|m-n| < 7$ for $n = 1, 2, 3, \ldots$. We have to prove that G is a skolem mean graph.

We have $V(G) = \{u, u_i\} \cup \{v, v_i\} \cup \{w, w_i\;|\;1 \leq i \leq m\} \cup \{x, x_j\;|\;1 \leq j \leq n\}$.

Then G has $m+n+6$ vertices and $m+n+2$ edges.

The required vertex labeling $f: V(G) \to \{1, 2, 3, 4, \ldots, m+n+6\}$ is defined as follows:

$\begin{align*}
 f(u) &= 1; f(v) = 2; f(w) = m+n+5; f(x) = 6; \\
 f(u_i) &= 3; \\
 f(v_i) &= 4; \\
 f(w_i) &= 2i+4 \text{ for } 1 \leq i \leq m; \\
 f(x_j) &= 2j+5 \text{ for } 1 \leq j \leq n.
\end{align*}$

The corresponding edge labels are as follows:

The edge label of uu_i is 2; vv_i is 3; ww_i is $\frac{m+n+2i+10}{2}$ for $1 \leq i \leq m$ and xx_j is $j+5$ for $1 \leq j \leq n$.

Hence the induced edge labels of G are distinct.

Hence the graph G is skolem mean graph.

Case-(f): Consider the graph $G = K_{i,1} \cup K_{i,1} \cup K_{1,m} \cup K_{1,n}$ when $n = m-5$. Let us consider the case that $|m-n| < 7$ for $n = 1, 2, 3, \ldots$. We have to prove that G is a skolem mean graph.
We have \(V(G) = \{ u, u_1 \}, \{ v, v_1 \}, \{ w \} \cup \{ w_i : 1 \leq i \leq m \} \cup \{ x_j : 1 \leq j \leq n \} \).

\(E(G) = \{ uu_1, vv_1 \} \cup \{ w_i : 1 \leq i \leq m \} \cup \{ xx_j : 1 \leq j \leq n \} \).

Then G has \(m + n + 6 \) vertices and \(m + n + 2 \) edges. The required vertex labeling
\(f : V(G) \to \{1, 2, 3, 4, ..., m + n + 6\} \) is defined as follows:

\[
\begin{align*}
 f(u) &= 1; \\
 f(v) &= 2; \\
 f(w) &= m + n + 5; \\
 f(x) &= 5; \\
 f(u_1) &= 3; \\
 f(v_1) &= 4; \\
 f(w_i) &= 2i + 5 \quad \text{for } 1 \leq i \leq m; \\
 f(x_j) &= 2j + 4 \quad \text{for } 1 \leq j \leq n
\end{align*}
\]

The corresponding edge labels are as follows:

The edge label of \(uu_1 \) is 2; \(vv_1 \) is 3; \(w_i \) is \(\frac{m + n + 2i + 10}{2} \) for \(1 \leq i \leq m \) and \(xx_j \) is \(j + 5 \) for \(1 \leq j \leq n \).

Hence the induced edge labels of G are distinct.

Hence the graph G is skolem mean graph.

Case-(g): Consider the graph \(G = K_{1,1} \cup K_{1,1} \cup K_{1,m} \cup K_{1,n} \) when \(n = m - 6 \). Let us consider the case that \(|m - n| < 7 \) for \(n = 1, 2, 3, ... \). We have to prove that G is a skolem mean graph.

We have \(V(G) = \{ u, u_1 \}, \{ v, v_1 \}, \{ w \} \cup \{ w_i : 1 \leq i \leq m \} \cup \{ x_j : 1 \leq j \leq n \} \).

\(E(G) = \{ uu_1, vv_1 \} \cup \{ w_i : 1 \leq i \leq m \} \cup \{ xx_j : 1 \leq j \leq n \} \).

Then G has \(m + n + 6 \) vertices and \(m + n + 2 \) edges.

The required vertex labeling
\(f : V(G) \to \{1, 2, 3, 4, ..., m + n + 6\} \) is defined as follows:

\[
\begin{align*}
 f(u) &= 1; \\
 f(v) &= 2; \\
 f(w) &= m + n + 5; \\
 f(x) &= 6; \\
 f(u_1) &= 3; \\
 f(v_1) &= 4; \\
 f(w_i) &= 2i + 6 \quad \text{for } 1 \leq i \leq m; \\
 f(x_j) &= 2j + 3 \quad \text{for } 1 \leq j \leq n
\end{align*}
\]

The corresponding edge labels are as follows:

The edge label of \(uu_1 \) is 2; \(vv_1 \) is 3; \(w_i \) is \(\frac{m + n + 2i + 11}{2} \) for \(1 \leq i \leq m \) and \(xx_j \) is \(j + 5 \) for \(1 \leq j \leq n \).

Hence the induced edge labels of G are distinct.

Hence the graph G is skolem mean graph.
3. ACKNOWLEDGEMENT

One of the authors (Dr. V. Balaji) acknowledges University Grants Commission, SERO and Hyderabad, India for financial assistance (No. F MRP 5766 / 15 (SERO / UGC)).

4. REFERENCES

4. V. Balaji, Solution of a Conjecture on Skolem Mean Graph of stars $K_{l_1} \cup K_{l_2} \cup K_{l_3}$, International Journal of Mathematical Combinatorics, vol.4, 2011, 115 – 117.
5. V. Balaji, D. S. T. Ramesh and V. Maheswari, Solution of a Conjecture on Skolem Mean Graph of Stars $K_{l_1} \cup K_{l_2} \cup K_{l_3} \cup K_{l_4}$, International Journal of Scientific & Engineering Research, 3(11) 2012, 125 - 128.
6. V. Balaji, D. S. T. Ramesh and V. Maheswari, Solution of a Conjecture on Skolem Mean Graph of Stars $K_{l_1} \cup K_{l_2} \cup K_{l_3} \cup K_{l_4}$, Sacred Heart Journal of Science & Humanities, Volume 3, July 2013.

Source of Support: University Grants Commission, SERO and Hyderabad, India.
Conflict of interest: None Declared

[Copy right © 2016, RJPA. All Rights Reserved. This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]