Available online through www.rjpa.info ISSN 2248-9037

THE EQUITABLE BONDAGE NUMBER OF A GRAPH

G. Deepak, N. D. Soner and Anwar Alwardi*

Department of Studies in Mathematics, University of Mysore, Mysore-570 006, India

E-mail: deepak1873@gmail.com, ndsoner@yahoo.co.in, a_wardi@hotmail.com

(Received on: 25-12-11; Accepted on: 02-01-12)

ABSTRACT

A subset D of V is called an equitable dominating set if for every $v \in V - D$ there exists a vertex $u \in D$ such that $uv \in D$ E(G) and $|deg(u) - deg(v)| \le 1$. The minimum cardinality of such a dominating set is called the equitable domination number and is denoted by $\gamma_e(G)$. We define the equitable bondage number $b_e(G)$ of a graph G to be the cardinality of a smallest set $X \subseteq E$ of edges for which $\gamma_e(G-X) > \gamma_e(G)$. Sharp bounds are obtained for $b_e(G)$ and the exact values are determined for some standard graphs.

Keywords: Graph, Bondage number, Equitable bondage number, Equitable domination number, Equitable domination.

Mathematics Subject Classification: 05C70.

INTRODUCTION:

The graphs considered here are finite, undirected without loops and multiple edges having p vertices and q edges. Any undefined term in this paper may be found in Harary [3]. A set D of vertices in a graph G is a dominating set if each vertex of G that is not in D is adjacent to at least one vertex of D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. For a survey of results on domination (see [4]). A subset D of V is called an equitable dominating set if for every $v \in V - D$ there exists a vertex $u \in D$ such that $uv \in E(G)$ and $ldeg(u) - deg(v) | \le V - D$ 1. The minimum cardinality of such a dominating set is denoted by $\gamma_e(G)$ and is called the equitable domination number of G. The bondage number b(G) of G is the minimum cardinally among the sets of edges $X \subseteq E$ such that $\gamma(G - X) > 0$ y(G) (see [2]). In this paper we now define the equitable bondage number of a graph G. The equitable bondage number $b_e(G)$ of a graph G is the minimum cardinality of a set $F \subset E$ of edges for which $\gamma_e(G - F) > \gamma_e(G)$.

SOME EXACT VALUES:

In several instances we shall have cause to use the ceiling function of a number x; that is denoted by [x] and takes the value of the least integer greater than or equal to x.

RESULTS:

 $b_e(K_p) = \left| \frac{p}{2} \right|$. **Proposition 1:** The equitable bondage number of the complete graph $K_p(p \ge 2)$ is

Proof: If H is a spanning subgraph of K_p that is obtained by removing fewer than $\left\lceil \frac{p}{2} \right\rceil$ edges from K_p , then H contains

a vertex of degree p-1, whence $\gamma_e(H)=1.$ Thus $b_e(K_p)\geq \left \lfloor \frac{p}{2} \right \rfloor.$

We consider two cases.

Case 1: If p is even, the removal of $\frac{p}{2}$ independent edges from K_p reduces the degree of each vertex to p-2 and therefore yields a graph H with equitable domination number $\gamma_e(H) = 2$.

G. Deepak, N. D. Soner and Anwar Alwardi*/ The Equitable Bondage Number of a Graphsingle Variable functions/RJPA- 1(9), Dec.-2011, Page: 209-

Case 2: If p is odd, the removal of $\frac{p-1}{2}$ independent edges from K_p leaves a graph having exactly one vertex of degree p-1, by removing one edge incident with this vertex, we obtain a graph H with $\gamma_e(H)=2$. In both cases, the graph H resulted from the removal of $\left\lceil \frac{p}{2} \right\rceil$ edges from K_p . Thus, $b_e(K_p)=\left\lceil \frac{p}{2} \right\rceil$.

We next determine the equitable bondage numbers of the cycle C_p and path P_p of order p.

Lemma A[1]: The equitable domination numbers of the cycle and path of order p are respectively

$$\gamma_e(C_p) = \left\lceil \frac{p}{3} \right\rceil \text{ for } p \ge 3 \text{ and}$$

$$\gamma_e(P_p) = \left\lceil \frac{p}{3} \right\rceil \text{ for } p \ge 1.$$

Theorem 2: Let $K_{m,n}$ be a complete bipartite graph with $|m-n| \le 1$ and $m \le n$ then $b_e(k_{m,n}) = m$.

Proof : Let $V = V_1 \cup V_2$ be the vertex set of $K_{m,n}$ where $|V_1| = m$ and $|V_2| = n$. Let $v \in V_2$ then by removing all edges incident with v we obtain a graph H containing two components K_1 and $K_{m,n-1}$. Hence

$$\begin{array}{lll} \gamma_e(H) & = \gamma_e(K_1) \ + \ \gamma_e(K_{m,\,n-1}) \\ & = \ 1 \ + \ \gamma_e(K_{m,\,n}) \\ & > \ \gamma_e(K_{m,\,n}) \end{array}$$

Thus,

$$\begin{array}{ll} b_e(K_{m,\,n}) \;=\; deg(v) \\ \;=\; |V_1| \\ \;=\; m. \end{array}$$

Theorem 3: The equitable bondage number of the p-cycle is

$$b_e(C_p) = \begin{cases} 3 & \text{if } p \equiv 1 \pmod{3} \\ 2 & \text{otherwise.} \end{cases}$$

Proof: Since $\gamma_e(C_p) = \gamma_e(P_p)$ for $p \ge 3$, we see that $b_e(C_p) \ge 2$. If $p \equiv 1 \pmod 3$ the removal of two edges from C_p leaves a graph H consisting of two paths X and Y. If X has order p_1 and Y has order p_2 then either $p_1 \equiv p_2 \equiv 2 \pmod 3$ or without loss of generality, $p_1 \equiv 0 \pmod 3$ and $p2 \equiv 1 \pmod 3$. In the former case,

$$\begin{split} \gamma_{e}(H) &= \gamma_{e}(X) + \gamma_{e}(Y) = \left\lceil \frac{p_{1}}{3} \right\rceil + \left\lceil \frac{p_{2}}{3} \right\rceil \\ &= \frac{\left(p_{1} + 1\right)}{3} + \frac{\left(p_{2} + 1\right)}{3} \\ &= \frac{p + 2}{3} > \left\lceil \frac{p}{3} \right\rceil = \gamma_{e}(C_{p}) \end{split}$$

In the latter case,

$$\begin{split} \gamma_{e}(H) &= \frac{p_1}{3} + \frac{\left(p_2 + 2\right)}{3} \\ &= \frac{\left(p + 2\right)}{3} > \left\lceil \frac{p}{3} \right\rceil = \gamma_{e}(C_p). \end{split}$$

In either case, when $p \equiv 1 \pmod{3}$, we have $\gamma_e(C_p) \geq 3$. To obtain the upper bounds that by trichotomy, will yield the desired equalities of our theorem's statement we consider two cases.

Case 1: Suppose that $p \equiv 0$, 2 (mod 3). The graph H obtained by removing two adjacent edges from C_p consists of an equitable isolated vertex and a path of order p-1. Thus,

$$\gamma_e(H) \quad = 1 + \gamma_e(P_{p-1}) = 1 + \left\lceil \frac{p-1}{3} \right\rceil$$

G. Deepak, N. D. Soner and Anwar Alwardi*/ The Equitable Bondage Number of a Graphsingle Variable functions/RJPA- 1(9),
Dec.-2011, Page: 209-

$$= 1 + \left\lceil \frac{p}{3} \right\rceil > \left\lceil \frac{p}{3} \right\rceil = \gamma_{e}(C_{p})$$

hence $b_e(C_p) \le 2$ in this case. Combining this with the upper bound obtained earlier, we have $b_e(C_p) = 2$ if $p \equiv 0, 2 \pmod{3}$.

Case 2: Suppose now that $p \equiv 1 \pmod{3}$. The graph H resulting from the deletion of three consecutive edges of C_p consists of two equitable isolated vertices and a path of order n-2. Thus,

$$\gamma_{e}(H) = 2 + \left\lceil \frac{(p-2)}{3} \right\rceil = 2 + \frac{(p-1)}{3}$$
$$= 2 + \left\lceil \frac{p}{3} \right\rceil - 1 > \left\lceil \frac{p}{3} \right\rceil = \gamma_{e}(C_{p})$$

so that $b_e(C_p) \le 3$. With the earlier inequality, we conclude that $b_e(C_p) = 3$ when $p \equiv 1 \pmod{3}$.

As an immediate corollary to the Theorem 3 we have the following

Corollary 3.1: The equitable bondage number of the path of order $(p \ge 2)$ is given by

$$b_e(P_p) = \begin{cases} 2 & \text{if } p \equiv 1 \pmod{3} \\ 1 & \text{otherwise.} \end{cases}$$

Theorem 4: The equitable bondage number of the wheel W_p is

$$b_e(W_p) = \begin{cases} 3 & \text{if } p \equiv 2 \pmod{3} \\ 2 & \text{otherwise.} \end{cases}$$

Proof: Let $W_p = K_1 + C_{p-1}$ and label C_{p-1} : e_1 , e_2 ... e_{p-1} be the edges of C_{p-1} . We consider two cases.

Case 1: Suppose that $p \equiv 2 \pmod{3}$. The graph H obtained by removing three consecutive edges e_1 , e_2 , e_3 on C_{p-1} form W_p consists of three equitable isolated vertices and a path of order p-3. Thus,

$$\begin{split} \gamma_e(H) &= 3 + \gamma_e(P_{p-3}) \\ &= 3 + \left\lceil \frac{p-3}{3} \right\rceil > \gamma_e(W_p) \end{split}$$

Hence, $b_e(W_p) = 3$.

Case 2: Suppose that $p \not\equiv 2 \pmod{3}$. The graph H resulting from the deletion of two adjacent edges e_1 and e_2 on C_{p-1} from W_p consists of two equitable isolated vertices and a path of order p-2. Thus,

$$\begin{split} \gamma_e(H) &= 2 + \gamma_e(P_{p-2}) \\ &= 2 + \left\lceil \frac{p-2}{3} \right\rceil > \gamma_e(W_p) \end{split}$$

Hence, $b_e(W_p) = 2$.

Theorem 5: If T is non trivial tree, then $b_e(T) \le 2$.

Proof: If T is of order 2 or 3 then it is clear that $b_e(T) = 1$. We are interested here about the equitable edge in the tree. Suppose that T has at least four vertices, then we can classify trees into 2 cases.

Case 1: According to the end edge of the trees, if all the end edge are not equitable then by deleting any equitable edge the equitable domination number will be increasing i.e., $b_e(T) = 1$.

Case 2: If the end edge are equitable then we have two sub cases, if there exists leaf which is P_4 then $b_e(T) = 2$ otherwise $b_e(T) = 1$.

Hence for any nontrivial tree then $b_e(T) \le 2$.

G. Deepak, N. D. Soner and Anwar Alwardi*/ The Equitable Bondage Number of a Graphsingle Variable functions/RJPA- 1(9), Dec.-2011, Page: 209-

Theorem 6: If G be any graph and x be equitable edge then $\gamma(G - x) \ge \gamma(G)$.

Proof: Since we have a theorem, for any edge x of a graph, $\gamma(G - x) \ge \gamma(G)$ and from the definition of equitable domination number if the graph without any equitable isolated vertex then the $\gamma_e(G) = \gamma(G)$ and of course if we delete any equitable edge x from the graph G we get $\gamma(G - x) \ge \gamma(G)$.

Theorem 7: If G is a connected graph of order $p \ge 2$, then $b_e(G) \le p - 1$.

Proof : Let u and v be adjacent vertices with $|deg(u) - deg(v)| \le 1$ and $deg(u) \le deg(v)$. Let E_u denote the set of edges incident with u. Then $\gamma_e(G - E_u) = \gamma_e(u)$ and $\gamma_e(G - u) = \gamma_e(G) - 1$. Also, if D denotes the union of all minimum equitable dominating sets for G - u, then u is adjacent in G to no vertex of D. Hence $|E_u| \le p - 1$ - |D| and $u \notin D$. Now if F_v denotes the set of edges from v to a vertex in D, then since $v \notin D$ we must have

$$\begin{split} \gamma_e(G-u-F_v) &> \gamma_e(G-u) \text{ or equivalently,} \\ \gamma_e(G-u-F_v) &> \gamma_e(G)-1 \end{split}$$
 Thus,
$$\begin{aligned} \gamma_e(G-(E_u \ \bigcup \ F_v)) &> \gamma_e(G) \text{ and} \end{aligned}$$
 we see that,
$$\begin{aligned} b_e(G) &\leq |E_u \ \bigcup \ F_v| \\ &= |E_u| + |F_v| \\ &\leq (p-1-|D|) + |D| \\ &= p-1 \end{aligned}$$

REFERENCES:

- [1] K. D. Dharmalingam, Studies in Graph Theory Equitable Domination and bottleneck domination, Ph.D. Thesis (2006).
- [2] J. F. Fink, M.S. Jackobson, L. F. Kinch and J. Roberts. The bondage number of a graph. Discrete Math. 86 (1990) 47-57.
- [3] F. Harary, Graph Theory, Addison-Wessley, Reading Mass. (1969).
- [4] T. W. Haynes, S. T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York (1998).
