ON A PRODUCT SUMMABILITY OF AN INFINITE SERIES

W. T. Sulaiman*

Department of Computer Engineering, College of Engineering, University of Mosul, Iraq E-mail: waadsulaiman@hotmail.com

(Received on: 22-09-11; Accepted on: 24-11-11)

ABSTRACT

New results concerning product summability of an infinite series are given. Some special cases are also deduced.

1. INTRODUCTION:

Let $\sum a_n$ be a given infinite series with partial sums s_n . Let u_n^{α} denote the nth Cesaro mean of order $\alpha > -1$ of the sequence (s_n) . The series $\sum a_n$ is summable

 $|C,\alpha|_{k}, k \ge 1$, if

(1)
$$\sum_{n=1}^{\infty} n^{k-1} \left| u_n^{\alpha} - u_{n-1}^{\alpha} \right|^k < \infty \qquad (Flett [1]).$$

For $\alpha = 1$, $|C, \alpha|_k$ reduces to $|C, 1|_k$ summability.

Let (p_n) be a sequence of positive real constants such that $P_n = \dots \to \infty$, as $n \to \infty$ $(P_{-1} = p_{-1} = 0)$. The (N, p) transform ϕ_n of (s_n) generated by (p_n) is defined by

(2)
$$\phi_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{n-\nu} s_{\nu}.$$

The sequence - to - sequence transformation

$$\Phi_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v$$

defines the sequence (Φ_n) of (\overline{N}, p_n) transform of (s_n) generated by (p_n) . The series $\sum a_n$ is summable $|R, p_n|_k$, $k \ge 1$, if

$$(3) \qquad \sum_{n=1}^{\infty} n^{k-1} \left| \Phi_n - \Phi_{n-1} \right|^k < \infty.$$

In the special case when $p_n = 1$ for all n (resp. k=1), $|R, p_n|_k$ summability reduces to $|C,1|_k$ (resp. $|R, p_n|$) summability.

The series $\sum a_n$ is said to be summable $|(N, p_n)(N, q_n)|$ (N, p_n) (N, q_n) ..., when the (N, p) transform of the (N, q) transform of (s_n) is a sequence of bounded variation (see Das [2]).

We give the following new definition:

Let (T_n) defines the sequence of the (\overline{N}, q_n) transform of the (\overline{N}, p_n) transform of (s_n) generated by the sequences (q_n) and (p_n) respectively. The series $\sum a_n$ is said to be summable $|(R, q_n)(R, p_n)|_k$, $k \ge 1$, if

(4)
$$\sum_{n=1}^{\infty} n^{k-1} \left| T_n - T_{n-1} \right|^k < \infty.$$

We may assume through the paper that $Q_n = q_0 + ... + q_n \to \infty$, $as \ n \to \infty$, $q_n / Q_n \to 0$, $as \ n \to \infty$.

2. NEW RESULTS:

We state and prove the following

Theorem: 2.1 Let $k \ge 1$, (λ_n) be a sequence of constants. Define

$$f_{v} = \sum_{r=v}^{n} \frac{q_{r}}{P_{r}}, \quad F_{v} = \sum_{r=v}^{n} p_{r} f_{r}.$$

Let

$$(5) p_{\nu}Q_{\nu} = O(P_{\nu}),$$

$$(6) P_{\nu} f_{\nu} = \mathcal{O}(\nu q_{\nu}),$$

(7)
$$\sum_{n=\nu+1}^{\infty} \frac{n^{k-1} q_n^k}{Q_n^k Q_{n-1}} = O\left(\frac{\left(\nu q_{\nu}\right)^{k-1}}{Q_{\nu}^k}\right).$$

Then sufficient conditions for the implication

(8)
$$\sum a_n$$
 is summable $|R, q_n|_k \Rightarrow \sum a_n \lambda_n$ is summable $|(R, q_n)(R, p_n)|_k$

are

$$(9) |\lambda_n| < Q_n,$$

(10)
$$vp_{\nu}|\lambda_{\nu}| = O(P_{\nu}),$$

(11)
$$|\lambda_{\nu}| F_{\nu} = O(Q_{\nu}),$$

(12)
$$\left| \Delta \lambda_{\nu} \right| F_{\nu} = O(q_{\nu}),$$

and

(13)
$$|\Delta \lambda_{\nu}| = O(q_{\nu}).$$

Proof: Let (S_n) be the sequence of partial sums of $\sum a_n \lambda_n$. Let v_n, V_n be the $(\overline{N}, q_n), (\overline{N}, q_n)(\overline{N}, p_n)$ transforms of the sequences $(s_n), (S_n)$ respectively. We write $t_n = v_n - v_{n-1}$, $T_n = V_n - V_{n-1}$. Therefore

(14)
$$t_n = \frac{q_n}{Q_n Q_{n-1}} \sum_{\nu=1}^n Q_{\nu-1} a_{\nu} ,$$

and

$$V_{n} = \frac{1}{Q_{n}} \sum_{r=0}^{n} q_{r} \frac{1}{P_{r}} \sum_{v=0}^{r} p_{v} S_{v}$$

$$= \frac{1}{Q_{n}} \sum_{v=0}^{n} p_{v} S_{v} \sum_{r=v}^{n} \frac{q_{r}}{P_{r}}$$

$$= \frac{1}{Q_{n}} \sum_{v=0}^{n} p_{v} S_{v} f_{v}.$$

$$\begin{split} T_{n} &= V_{n} - V_{n-1} \\ &= \frac{q_{n}}{Q_{n}Q_{n-1}} \sum_{r=0}^{n} p_{r} S_{r} f_{r} + \frac{p_{n}S_{n}f_{n}}{Q_{n-1}} \\ &= \frac{q_{n}}{Q_{n}Q_{n-1}} \sum_{r=0}^{n} p_{r} f_{r} \sum_{\nu=0}^{r} a_{\nu} \lambda_{\nu} + \frac{p_{n}q_{n}}{P_{n}Q_{n-1}} \sum_{\nu=0}^{n} a_{\nu} \lambda_{\nu} \\ &= \frac{q_{n}}{Q_{n}Q_{n-1}} \sum_{\nu=0}^{n} a_{\nu} \lambda_{\nu} \sum_{r=\nu}^{n} p_{r} f_{r} + \frac{p_{n}q_{n}}{P_{n}Q_{n-1}} \sum_{\nu=0}^{n} a_{\nu} \lambda_{\nu} \\ &= \frac{q_{n}}{Q_{n}Q_{n-1}} \sum_{\nu=1}^{n} Q_{\nu-1} a_{\nu} \frac{\lambda_{\nu}}{Q_{\nu-1}} \sum_{r=\nu}^{n} p_{r} f_{r} + \frac{p_{n}q_{n}}{P_{n}Q_{n-1}} \sum_{\nu=1}^{n} Q_{\nu-1} a_{\nu} \frac{\lambda_{\nu}}{Q_{\nu-1}} \\ &= \frac{q_{n}}{Q_{n}Q_{n-1}} \left(\sum_{\nu=1}^{n-1} \left(\sum_{\nu=1}^{\nu} Q_{r-1} a_{r} \right) \Delta_{\nu} \left(\frac{\lambda_{\nu}}{Q_{\nu-1}} \sum_{r=\nu}^{n} p_{r} f_{r} \right) + \left(\sum_{\nu=1}^{n} Q_{\nu-1} a_{\nu} \right) \frac{\lambda_{n}p_{n}f_{n}}{Q_{n-1}} \right) \\ &+ \frac{p_{n}q_{n}}{P_{n}Q_{n-1}} \left(\sum_{\nu=1}^{n-1} \left(\sum_{\nu=1}^{\nu} Q_{r-1} a_{r} \right) \Delta \left(\frac{\lambda_{\nu}}{Q_{\nu-1}} \right) + \left(\sum_{\nu=1}^{n} Q_{\nu-1} a_{\nu} \right) \frac{\lambda_{n}}{Q_{n-1}} \right) \\ &= \frac{q_{n}}{Q_{n}Q_{n-1}} \left(\sum_{\nu=1}^{n-1} \left(t_{\nu}\lambda_{\nu}F_{\nu} + \frac{Q_{\nu-1}}{q_{\nu}} p_{\nu}t_{\nu}\lambda_{\nu}f_{\nu} + \frac{Q_{\nu-1}}{q_{\nu}}t_{\nu}\Delta\lambda_{\nu}F_{\nu+1} \right) + \frac{p_{n}}{Q_{n-1}}t_{n}\lambda_{n}f_{n} \\ &+ \frac{p_{n}q_{n}}{P_{n}Q_{n-1}} \left(\sum_{\nu=1}^{n-1} \left(t_{\nu}\lambda_{\nu} + \frac{Q_{\nu-1}}{q_{\nu}} t_{\nu}\Delta\lambda_{\nu} \right) \right) + \frac{p_{n}Q_{n}}{P_{n}Q_{n-1}}t_{n}\lambda_{n}f_{n} \\ &= \sum_{\nu=1}^{7} T_{nj}. \end{split}$$

In order to complete the proof, it sufficient to show that

$$\sum_{n=1}^{\infty} n^{k-1} |T_{nj}|^k < \infty, \quad j = 1, 2, 3, 4, 5, 6, 7.$$

Applying Hölder's inequality,

$$\begin{split} \sum_{n=2}^{m+1} n^{k-1} \big| T_{n1} \big|^k &= \sum_{n=2}^{m+1} n^{k-1} \bigg| \frac{q_n}{Q_n Q_{n-1}} \sum_{\nu=1}^{n-1} t_{\nu} \lambda_{\nu} F_{\nu} \bigg|^k \\ &\leq \sum_{n=2}^{m+1} \frac{n^{k-1} q_n^k}{Q_n^k Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{1}{q_{\nu}^{k-1}} \big| t_{\nu} \big|^k \big| \lambda_{\nu} \big|^k F_{\nu}^k \left(\sum_{\nu=1}^{n-1} \frac{q_{\nu}}{Q_{n-1}} \right)^{k-1} \\ &= O(1) \sum_{\nu=1}^{m} \frac{1}{q_{\nu}^{k-1}} \big| t_{\nu} \big|^k \big| \lambda_{\nu} \big|^k F_{\nu}^k \sum_{n=\nu+1}^{m+1} \frac{n^{k-1} q_n^k}{Q_n^k Q_{n-1}} \\ &= O(1) \sum_{\nu=1}^{m} \nu^{k-1} \big| t_{\nu} \big|^k \frac{\big| \lambda_{\nu} \big|^k F_{\nu}^k}{Q_{\nu}^k} = O(1). \end{split}$$

$$\sum_{n=2}^{m+1} n^{k-1} \big| T_{n2} \big|^k = \sum_{n=2}^{m+1} n^{k-1} \frac{q_n}{Q_n Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{Q_{\nu-1} p_{\nu}}{q_{\nu}} t_{\nu} \lambda_{\nu} f_{\nu} \bigg|^k \\ &\leq \sum_{n=2}^{m+1} \frac{n^{k-1} q_n^k}{Q_n^k Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{Q_{\nu-1}^k p_{\nu}^k}{q_{\nu}^{2k-1}} \big| t_{\nu} \big|^k \big| \lambda_{\nu} \big|^k f_{\nu}^k \left(\sum_{\nu=1}^{n-1} \frac{q_{\nu}}{Q_{n-1}} \right)^{k-1} \end{split}$$

$$= O(1) \sum_{\nu=1}^{m} \frac{Q_{\nu-1}^{k} p_{\nu}^{k}}{q_{\nu}^{2k-1}} |t_{\nu}|^{k} |\lambda_{\nu}|^{k} f_{\nu}^{k} \sum_{n=\nu+1}^{m+1} \frac{n^{k-1} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}}$$

$$= O(1) \sum_{\nu=1}^{m} v^{k-1} |t_{\nu}|^{k} \frac{p_{\nu}^{k}}{q_{\nu}^{k}} |\lambda_{\nu}|^{k} f_{\nu}^{k}$$

$$= O(1) \sum_{\nu=1}^{m} v^{k-1} |t_{\nu}|^{k} |\lambda_{\nu}|^{k} \left(\frac{\nu p_{\nu}}{P_{\nu}}\right)^{k} = O(1).$$

$$\sum_{\nu=1}^{m+1} v^{k-1} |T_{\nu}|^{k} = \sum_{\nu=1}^{m+1} v^{k} = \sum_{\nu=1}^{m+1} v^{k} |T_{\nu}|^{k} = \sum_{\nu=1}^{m+1} v^{k} |T_{\nu}|^{k} = \sum_{\nu=1}^{m+1} v^{k} |T_{\nu}|^{k} = \sum_{\nu=1}^{m+1} v^{k} |T_{\nu}|^{k} = \sum_{\nu=1}^{m+1}$$

$$\sum_{n=2}^{m+1} n^{k-1} \left| T_{n3} \right|^{k} = \sum_{n=2}^{m+1} n^{k-1} \left| \frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{Q_{\nu-1}}{q_{\nu}} t_{\nu} \Delta \lambda_{\nu} F_{\nu+1} \right|^{k}$$

$$\leq \sum_{n=1}^{m+1} n^{k-1} \frac{q_{n}^{k}}{Q_{n}^{k} Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{Q_{\nu-1}^{k}}{q_{\nu}^{2k-1}} \left| t_{\nu} \right|^{k} \left| \Delta \lambda_{\nu} \right|^{k} F_{\nu}^{k} \left(\sum_{\nu=1}^{n-1} \frac{q_{\nu}}{Q_{n-1}} \right)^{k}$$

$$= O(1) \sum_{\nu=1}^{m} \frac{Q_{\nu-1}^{k}}{q_{\nu}^{2k-1}} \left| t_{\nu} \right|^{k} \left| \Delta \lambda_{\nu} \right|^{k} F_{\nu}^{k} \sum_{n=\nu+1}^{m+1} \frac{n^{k-1} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}}$$

$$= O(1) \sum_{\nu=1}^{m} \nu^{k-1} \left| t_{\nu} \right|^{k} \left| \Delta \lambda_{\nu} \right|^{k} F_{\nu}^{k} \frac{1}{q_{\nu}^{k}} = O(1).$$

$$\sum_{n=1}^{m} n^{k-1} |T_{n4}|^{k} = \sum_{n=1}^{m} n^{k-1} \left| \frac{p_{n}}{Q_{n-1}} t_{n} \lambda_{n} f_{n} \right|^{k}$$

$$= O(1) \sum_{n=1}^{m} n^{k-1} |t_{n}|^{k} |\lambda_{n}|^{k} \left(\frac{q_{n}}{Q_{n-1}} \right)^{k} \left(\frac{np_{n}}{P_{n}} \right)^{k} ,$$

as
$$\frac{q_n}{Q_{n-1}} = \frac{q_n}{Q_n - q_n} = \frac{1}{\frac{Q_n}{q_n} - 1} \to 0$$
,

$$\sum_{n=1}^{\infty} n^{k-1} |T_{n4}|^{k} = O(1) \sum_{n=1}^{m} n^{k-1} |t_{n}|^{k} |\lambda_{n}|^{k} \left(\frac{np_{n}}{P_{n}}\right)^{k} = O(1)$$

$$\begin{split} \sum_{n=2}^{m+1} n^{k-1} \left| T_{n5} \right|^k &= \sum_{n=2}^{m+1} n^{k-1} \left| \frac{P_n q_n}{P_n Q_{n-1}} \sum_{\nu=1}^{n-1} t_{\nu} \lambda_{\nu} \right|^k \\ &\leq \sum_{n=1}^{m+1} n^{k-1} \frac{P_n^k q_n^k}{P_n^k Q_{n-1}} \sum_{\nu=1}^{n-1} \left| t_{\nu} \right|^k \left| \lambda_{\nu} \right|^k \frac{1}{q_{\nu}^{k-1}} \left(\sum_{\nu=1}^{n-1} \frac{q_{\nu}}{Q_{n-1}} \right)^{k-1} \\ &= O(1) \sum_{\nu=1}^{m} \left| t_{\nu} \right|^k \left| \lambda_{\nu} \right|^k \frac{1}{q_{\nu}^{k-1}} \sum_{n=\nu+1}^{m+1} \frac{n^{k-1} p_n^k q_n^k}{P_n^k Q_{n-1}} \\ &= O(1) \sum_{\nu=1}^{m} \left| t_{\nu} \right|^k \left| \lambda_{\nu} \right|^k \frac{1}{q_{\nu}^{k-1}} \sum_{n=\nu+1}^{m+1} \frac{n^{k-1} q_n^k}{Q_n^k Q_{n-1}} \\ &= O(1) \sum_{\nu=1}^{m} \nu^{k-1} \left| t_{\nu} \right|^k \left| \lambda_{\nu} \right|^k \frac{1}{Q_{\nu}^{k-1}} \sum_{n=\nu+1}^{m+1} \frac{n^{k-1} q_n^k}{Q_n^k Q_{n-1}} \\ &= O(1) \sum_{\nu=1}^{m} \nu^{k-1} \left| t_{\nu} \right|^k \left| \lambda_{\nu} \right|^k \frac{1}{Q_{\nu}^{k-1}} \sum_{n=\nu+1}^{m+1} \frac{n^{k-1} q_n^k}{Q_n^k Q_{n-1}} \end{split}$$

$$\sum_{n=2}^{m+1} n^{k-1} \left| T_{n6} \right|^{k} = \sum_{n=2}^{m+1} n^{k-1} \left| \frac{P_{n} q_{n}}{P_{n} Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{Q_{\nu-1}}{q_{\nu}} t_{\nu} \Delta \lambda_{\nu} \right|^{k}$$

$$\leq \sum_{n=2}^{m+1} n^{k-1} \frac{P_{n}^{k} q_{n}^{k}}{P_{n}^{k} Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{Q_{\nu-1}^{k}}{q^{2k-1}} \left| t_{\nu} \right|^{k} \left| \Delta \lambda_{\nu} \right|^{k} \left(\sum_{\nu=1}^{n-1} \frac{q_{\nu}}{Q_{n-1}} \right)^{k-1}$$

$$= O(1) \sum_{\nu=1}^{m} \frac{Q_{\nu-1}^{k}}{q_{\nu}^{2k-1}} \left| t_{\nu} \right|^{k} \left| \Delta \lambda_{\nu} \right|^{k} \sum_{n=\nu+1}^{m+1} n^{k-1} \frac{P_{n}^{k} q_{n}^{k}}{P_{n}^{k} Q_{n-1}}$$

$$= O(1) \sum_{\nu=1}^{m} \nu^{k-1} \left| t_{\nu} \right|^{k} \left| \Delta \lambda_{\nu} \right|^{k} \frac{1}{q_{\nu}^{k}} = O(1).$$

Finally

$$\sum_{n=1}^{m} n^{k-1} |T_{n7}|^{k} = \sum_{n=1}^{m} n^{k-1} \left| \frac{p_{n} Q_{n}}{P_{n} Q_{n-1}} t_{n} \lambda_{n} \right|^{k}$$

$$= O(1) \sum_{n=1}^{m} n^{k-1} |t_{n}|^{k} |\lambda_{n}|^{k} \left(\frac{p_{n}}{P_{n}} \right)^{k} = O(1).$$

This completes the proof of the theorem.

Theorem: 2.2 Let (7) be satisfied and

$$(16) P_{\nu} = O(p_{\nu}Q_{\nu}),$$

$$(17) Q_n = O(nq_n).$$

Then necessary conditions for the implication (8) to be satisfied are

$$\left|\lambda_{\nu}\right| = O\left(\frac{Q_{\nu-1}}{1+F_{\nu}}\right), \ \left|\lambda_{\nu}\right| = O\left(\frac{v^{1-1/k}q_{\nu}}{p_{\nu}f_{\nu}}\right), \ \left|\Delta\lambda_{\nu}\right| = O\left(\frac{v^{1-1/k}q_{\nu}}{1+F_{\nu+1}}\right).$$

Proof: For $k \ge 1$ define

$$A^* = \{(a_j): \sum a_j \text{ is summable } |R, q_n|_k\},$$

$$B^* = \{(b_j): \sum b_j \lambda_j \text{ is summable } |(R, q_n)(R, p_n)|_k\}.$$

From (15), we have

(18)
$$T_{n} = \sum_{\nu=1}^{n} \left(\frac{q_{n} F_{\nu}}{Q_{n} Q_{n-1}} + \frac{p_{n} q_{n}}{P_{n} Q_{n-1}} \right) a_{\nu} \lambda_{\nu}$$

With t_n and T_n as defined by (14) and (18), the spaces A^* and B^* are BK-spaces with norms defined by

(19)
$$||c||_{1} = \left\{ |t_{0}|^{k} + \sum_{n=1}^{\infty} n^{k-1} |t_{n}|^{k} \right\}^{1/k},$$

(20)
$$||c||_{2} = \left\{ |T_{0}|^{k} + \sum_{n=1}^{\infty} n^{k-1} |T_{n}|^{k} \right\}^{1/k}.$$

respectively. By the hypothesis of the theorem,

$$||c||_1 < \infty \implies ||c||_2 < \infty.$$

The inclusion map $i: A^* \to B^*$ defined by i(a) = a is continuous since A^* and B^* are BK-spaces. By the closed graph theorem, there exist a constant K>0 such that

$$\left\| c \right\|_2 \le K \left\| c \right\|_1.$$

Let e_n denote the nth coordinate vector. From (14) and (18), with (a_n) defined by $a_n = e_n - e_{n+1}$, n = v, $a_n = 0$ otherwise, we have

$$t_{n} = \begin{cases} 0, & n < v \\ \frac{q_{v}}{Q_{v}}, & n = v \\ -\frac{q_{n}q_{v}}{Q_{n}Q_{n-1}}, & n > v \end{cases}.$$

and

$$T_{n} = \begin{cases} 0, & n < v \\ \left(\frac{q_{v}F_{v}}{Q_{v}Q_{v-1}} + \frac{p_{v}q_{v}}{P_{v}Q_{v-1}}\right)\lambda_{v} & n = v \\ \Delta_{v}\left(\left(\frac{q_{n}F_{v}}{Q_{n}Q_{n-1}} + \frac{p_{n}q_{n}}{P_{n}Q_{n-1}}\right)\lambda_{v}\right), & n > v. \end{cases}$$

From (19) and (20), we have

(23)
$$||c||_{1} = \left\{ v^{k-1} \left(\frac{q_{v}}{Q_{v}} \right)^{k} + \sum_{n=v+1}^{\infty} n^{k-1} \left(\frac{q_{n} q_{v}}{Q_{n} Q_{n-1}} \right)^{k} \right\}^{1/k},$$

(24)
$$\|c\|_{2} = \left\{ v^{k-1} \left\| \left(\frac{q_{v} F_{v}}{Q_{v} Q_{v-1}} + \frac{p_{v} q_{v}}{P_{v} Q_{v-1}} \right) \lambda_{v} \right\|^{k} + \sum_{n=v+1}^{\infty} n^{k-1} \left| \Delta_{v} \left(\left(\frac{q_{n} F_{v}}{Q_{n} Q_{n-1}} + \frac{p_{n} q_{n}}{P_{n} Q_{n-1}} \right) \lambda_{v} \right) \right\|^{k} \right\}^{1/k}$$

Applying (22), we obtain

$$(25) \quad v^{k-1} \left\| \left(\frac{q_{v} F_{v}}{Q_{v} Q_{v-1}} + \frac{p_{v} q_{v}}{P_{v} Q_{v-1}} \right) \lambda_{v} \right\|^{k} + \sum_{n=v+1}^{\infty} n^{k-1} \left| \Delta_{v} \left(\left(\frac{q_{n} F_{v}}{Q_{n} Q_{n-1}} + \frac{p_{n} q_{n}}{P_{n} Q_{n-1}} \right) \lambda_{v} \right) \right|^{k} \right.$$

$$= O(1) \left(v^{k-1} \left(\frac{q_{v}}{Q_{v}} \right)^{k} + \sum_{n=v+1}^{\infty} n^{k-1} \left(\frac{q_{n} q_{v}}{Q_{n} Q_{n-1}} \right)^{k} \right).$$

As the R.H.S of (25), by (7), is

$$= O(1) \left(v^{k-1} \left(\frac{q_v}{Q_v} \right)^k + \frac{q_v^k}{Q_v^{k-1}} \sum_{n=v+1}^{\infty} \frac{n^{k-1} q_n^k}{Q_n^k Q_{n-1}} \right)$$

$$= O(1) \left(v^{k-1} \left(\frac{q_v}{Q_v} \right)^k + \left(\frac{q_v}{Q_v} \right)^{k-1} v^{k-1} \left(\frac{q_v}{Q_v} \right)^k \right)$$
$$= O\left(v^{k-1} \left(\frac{q_v}{Q_v} \right)^k \right),$$

and the fact that each term of the L.H.S of (25) is $O\left(v^{k-1}\left(\frac{q_v}{Q_v}\right)^k\right)$, we obtain

$$v^{k-1} \left(\frac{q_{\nu} F_{\nu}}{Q_{\nu} Q_{\nu-1}} + \frac{p_{\nu} q_{\nu}}{P_{\nu} Q_{\nu-1}} \right)^{k} \left| \lambda_{\nu} \right|^{k} = O \left(v^{k-1} \left(\frac{q_{\nu}}{Q_{\nu}} \right)^{k} \right),$$

which implies by (16)

$$\left(\frac{q_{v}}{Q_{v}Q_{v-1}}\right)^{k}\left(1+F_{v}\right)^{k}\left|\lambda_{v}\right|^{k}=O\left(\frac{q_{v}}{Q_{v}}\right)^{k},$$

that is

$$\left|\lambda_{\nu}\right| = O\left(\frac{Q_{\nu-1}}{1+F_{\nu}}\right).$$

Also, we have, by (25),

$$(26) \quad \sum_{n=\nu+1}^{\infty} n^{k-1} \left| \left(\frac{q_n p_{\nu} f_{\nu}}{Q_n Q_{n-1}} \right) \lambda_{\nu} + \left(\frac{q_n F_{\nu+1}}{Q_n Q_{n-1}} + \frac{p_n q_n}{P_n Q_{n-1}} \right) \Delta \lambda_{\nu} \right|^k = O\left(\nu^{k-1} \left(\frac{q_{\nu}}{Q_{\nu}} \right)^k \right).$$

The above, via the linear independence of λ_{v} and $\Delta\lambda_{v}$, implies

$$\sum_{n=\nu+1}^{\infty} n^{k-1} \left(\frac{q_n F_{\nu+1}}{Q_n Q_{n-1}} + \frac{p_n q_n}{P_n Q_{n-1}} \right)^k \left| \Delta \lambda_{\nu} \right|^k = O\left(v^{k-1} \left(\frac{q_{\nu}}{Q_{\nu}} \right)^k \right)$$

$$\left|\Delta \lambda_{\nu}\right|^{k} \left(1 + F_{\nu+1}\right)^{k} \sum_{n=\nu+1}^{\infty} n^{k-1} \left(\frac{q_{n}}{Q_{n}Q_{n-1}}\right)^{k} = O\left(v^{k-1} \left(\frac{q_{\nu}}{Q_{\nu}}\right)^{k}\right).$$
 (by (16))

As by (17), via the mean value theorem,

$$\frac{1}{Q_{v}^{k}} = \sum_{n=v+1}^{\infty} \Delta \left(\frac{1}{Q_{n-1}^{k}} \right) = O(1) \sum_{n=v+1}^{\infty} \frac{\left| \Delta Q_{n-1}^{k} \right|}{Q_{n}^{k} Q_{n-1}^{k}} = O(1) \sum_{n=v+1}^{\infty} \frac{Q_{n-1}^{k-1} q_{n}}{Q_{n}^{k} Q_{n-1}^{k}} = O(1) \sum_{n=v+1}^{\infty} n^{k-1} \left(\frac{q_{n}}{Q_{n} Q_{n-1}} \right)^{k}, \text{ then,}$$

$$\left|\Delta\lambda_{\nu}\right|^{k}\left(1+F_{\nu+1}\right)^{k}\frac{1}{Q_{\nu}^{k}}=O\left(\nu^{k-1}\left(\frac{q_{\nu}}{Q_{\nu}}\right)^{k}\right),$$

which implies

$$\Delta \lambda_{v} = O\left(\frac{v^{1-1/k}q_{v}}{1+F_{v+1}}\right).$$

Also, by (26),

$$\begin{split} &\sum_{n=\nu+1}^{\infty} n^{k-1} \left| \frac{q_n p_{\nu} f_{\nu}}{Q_n Q_{n-1}} \lambda_{\nu} \right|^k = O\left(v^{k-1} \left(\frac{q_{\nu}}{Q_{\nu}} \right)^k \right), \\ &p_{\nu}^k f_{\nu}^k \left| \lambda_{\nu} \right|^k \sum_{n=\nu+1}^{\infty} n^{k-1} \left(\frac{q_n}{Q_n Q_{n-1}} \right)^k = O\left(v^{k-1} \left(\frac{q_{\nu}}{Q_{\nu}} \right)^k \right), \\ &p_{\nu}^k f_{\nu}^k \left| \lambda_{\nu} \right|^k \frac{1}{Q_{\nu}^k} = O\left(v^{k-1} \left(\frac{q_{\nu}}{Q_{\nu}} \right)^k \right), \end{split}$$

which implies

$$\lambda_{v} = O\left(\frac{v^{1-1/k}q_{v}}{p_{v}f_{v}}\right).$$

3. APPLICATIONS:

Corollary: 3.1 Let $k \ge 1$. Define

(27)
$$f_{v} = \sum_{r=v}^{n} \frac{q_{r}}{r}, \ F_{v} = \sum_{r=v}^{n} f_{r}.$$

Let

$$(28) Q_v = O(v),$$

$$(29) f_v = O(q_v).$$

Then sufficient conditions for the implication

(30)
$$\sum a_n$$
 is summable $|R, q_n|_k \Rightarrow \sum a_n \lambda_n$ is summable $|(R, q_n)(C, 1)|_k$ are

$$(31) \left| \lambda_n \right| < Q_n \,,$$

$$(32) |\lambda_{\nu}| f_{\nu} = O(1),$$

(33)
$$\left| \lambda_{\nu} \right| F_{\nu} = \mathcal{O}(Q_{\nu}),$$

(34)
$$\left| \Delta \lambda_{v} \right| F_{v} = \mathcal{O}(q_{v}),$$

(35)
$$\left|\Delta\lambda_{v}\right| = O(q_{v}).$$

Proof: Follows from theorem 1 by putting $p_n = 1$ for all n.

Corollary: 3.2 Let $k \ge 1$. Define

(36)
$$f_v = \sum_{r=v}^n \frac{1}{P_r}, F_v = \sum_{r=v}^n p_r f_r.$$

Let

$$(37) vp_{v} = O(P_{v}),$$

$$(38) P_{v} f_{v} = O(v).$$

Then sufficient conditions for the implication

(39)
$$\sum a_n$$
 is summable $|C,1|_k \Rightarrow \sum a_n \lambda_n$ is summable $|(C,1)(R,p_n)|_k$

are

$$(40) |\lambda_n| < n,$$

W. T. Sulaiman*/On A Product Summability of An Infinite Series /RJPA-1(8), Nov.-2011, Page: 196-204

$$(41) vp_{\nu}|\lambda_{\nu}| = O(P_{\nu}),$$

(42)
$$\left| \lambda_{v} \right| F_{v} = O(v),$$

$$|\Delta \lambda_{v}| F_{v} = O(1),$$

$$|\Delta \lambda_{\nu}| = O(1).$$

Proof: This follows from theorem 1, by putting $q_n = 1$ for all n, noticing that (7) for $q_n = 1$ is obviously satisfied as

$$\sum_{n=\nu+1}^{\infty} \frac{1}{n(n-1)} = \sum_{n=\nu+1}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n} \right) = \frac{1}{\nu}.$$

Corollary: 3.3 Let f_v , F_v be as defined in (27). Let (7) and (17) be satisfied and

$$(45) v = O(Q_v).$$

Then necessary conditions for the implication (30) are

$$\lambda_{v} = O\left(\frac{Q_{v-1}}{1+F_{v}}\right), \ \lambda_{v} = O\left(\frac{v^{1-1/k}q_{v}}{f_{v}}\right) \ \Delta\lambda_{v} = O\left(\frac{v^{1-1/k}q_{v}}{1+F_{v+1}}\right)$$

Proof: Follows from theorem 4 by putting $p_n = 1$ for all n.

Corollary: 3.4 Let f_{ν} , F_{ν} be as defined in (36). Let

$$(46) P_{v} = O(vp_{v}).$$

Then necessary conditions for the implication (39) are

$$\lambda_{v} = O\left(\frac{v}{1 + F_{v}}\right), \ \lambda_{v} = O\left(\frac{v^{1 - 1/k}}{p_{v} f_{v}}\right), \ \Delta \lambda_{v} = O\left(\frac{v^{1 - 1/k}}{1 + F_{v + 1}}\right).$$

Proof: Follows from theorem 4 by putting $q_n = 1$ for all n.

REFERENCES:

- [1] T.M.Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London. Math. Soc.7 (1957) 113-141.
- [2] G. Das, Tauberian theorems for absolute Norlund summability, Proc. London Math. Soc. 19 (1969) 357-384.
