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ABSTRACT 
We present some results on associators in the center of nonassociative rings. In this paper we show that if R  is 
simple, characteristic≠ 2, 3 and satisfies ( , ( , , )) 0R R R R = , then R must be either associative or commutative. 
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1. INTRODUCTION 
 
The great mathematician Thedy whose contribution towards the rings is great ppreciable. He has introduced that rings 
which satisfy the identity ( , ( , , )) 0R R R R =                                                                                                                 (1) 
 
Now by using his results we show that R is a simple ring of char. ≠ 2, 3 and satisfies ( , ( , , )) 0R R R R =  then R  must 
be either associative or commutative. 
  
2. PRELIMINARIES 
 
In this paper we consider a nonassociative ring R , which satisfies ( , ( , , )) 0R R R R = ..(2)  Let R  be a 
nonassociative ring. We shall denote commutator and the associator by ( , )x y xy yx= −  and 

( , , ) ( ) ( )x y z xy z x yz= −  for all , ,x y z  in R  respectively. By the center C  of R , c  in  N such that ( , ) 0c R = . 
It is easily verified that N is a subring of R  and C  is a subring of N . Obviously, we note that N R=   if and only if 
R is an associative ring andC R=   if and only if R is associative and commutative. A ring R  is said to be char. n≠  
if 0nx =  0x⇒ = , for all x R∈  and  n N∈  . A ring R is said to be simple if whenever A  is an ideal of R , then 
either A R= or 0A = .  
 
3. MAIN RESULTS 
 
In every ring the so called semi-Jacobi identity 

( , ) ( , ) ( , ) ( , , ) ( , , ) ( , , )xy z x y z x z y x y z z x y x z y= + + + −                                                        (3) 
 
Lemma 3.1: V  is an ideal of R . 
 
Proof: SinceV U⊂ , it is sufficient to show that V  is a right ideal. Let v V∈ . Then for all ,r s R∈ , vr U∈  
follows from the definition ofV . Since (2) implies ( , , )v r s U∈  and . ( , , ) .vr s v r s vr s U= + ∈ , it follows that
vr V∈ .  
              
Theorem 3.1: If R is a simple ring of char. ≠ 2, 3 and satisfies ( , ( , , )) 0R R R R =  then R is either associative or 
commutative. 
 
Proof:  Now very first to prove the theorem, assume that R  is not commutative. Hence V is not equals to R . 
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Since  R  is simple and by the lemma.3.1 we reduce the case, where V is equals to zero. Then in every ring the 
Teichmuller identity is 

( , , ) ( , , ) ( , , ) ( , , ) ( , , )wx y z w xy z w x yz w x y z w x y z− + = +                                                     (4) 
 
It follows that on expanding each side and using the associator definition. 
 
Now by using (2) and every term of (4) is commute by r  we have 

[ , ( , , )] [ , ( , , )] [ , ( , , )] [ , ( , , )] [ , ( , , ) ]r wx y z r w xy z r w x yz r w x y z r w x y z− + = +  
[ , ( , , )] [ , ( , , ) ] 0r w x y z r w x y z⇒ + =  

So that                 [ , ( , , )] [ , ( , , ) ] [ , ( , , )]r w x y z r w x y z r z w x y= − = −  
 
Using (2). By permuting cyclically ( )wzyx  we get 

[ , ( , , )] [ , ( , , )] [ , ( , , )] [ , ( , , , )]r w x y z r z w x y r y z w x r x y z w= − = − = −                                    (5) 
 
Let the   associator of  R  is a , which is an arbitrary 
 
Let y x=  and z a= in (3) and use (2). 

Thus 2( , ) ( , ) ( , ) ( , , ) ( , , ) ( , , )x a x x a x a x x x a a x x x a x= + + + −  
 
So that                ( , , ) ( , , ) ( , , ) 0x x a a x x x a x+ − =                                                                                                     (6) 
 
Now by using (6), multiplying with x  on left and simultaneously commutating by z . 
Then we get 

( , (( , , ) ( , , ) ( , , )) 0z x x x a a x x x a x+ − =                                                                                        (7) 
 
Using (5) and (7), we see that 

( , ( , , )) ( , ( , , )) ( , ( , , )) 0z a x x x z a x x x z a x x x− − − =  
3( , ( , , )) 0z a x x x⇒ − =  

Thus                     ( , ( , , )) 0z a x x x =  
 
Now we change a  with ( , , )b c d .  Because of an arbitrary associator a , we obtain 

( , ( , , )( , , )) 0z b c d x x x =                                                                                                                   (8) 
( , ( , , )( , , )) 0z x x x b c d =                                                                                                                   (9) 

 
Applying (5) to (9), we obtain 

( , (( , , ), , ) ) 0z x x x b c d− =  
Then                    ( , (( , , ), , )) 0z d x x x b c− =  

( , (( , , ), , )) 0z d x x x b c⇒ =  
( , ( , ( , , ), )) 0z c d x x x b⇒ − =  

( , ( , , ( , , ))) 0z b c d x x x⇒ =  
Thus               ( , ( , , ( , , ))) 0z b c d x x x⇒ = = ( , ( , ( , , ), )) 0z c d x x x b = = ( , (( , , ), , ))z d x x x b c                           (10) 
 
By using (2) in the above we get 

( ( , , ( , , ))) (( , , ( , , )) )b c d x x x c d x x x b=  
 
But (10) and (2) prove that 

( , , ( , , )) ,c d x x x V∈ ( , ( , , ), )d x x x b V∈  and (( , , ), , )x x x b c V∈  
 
Since 0, ( , , )V x x x= must be in the nucleus of R . 
This is combined with (2) prove that ( , , )x x x is in the center of R . 
Next we apply (5) to ( , ( , , ))z x x x x . 
Thus ( , ( , , )) ( , ( , , ))z x x x x z x x x x= −  
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This leads to      2 (, ( , , )) 0z x x x x =  
So that                 ( , ( , , )) 0z x x x x =                                                                                                                             (11) 
 
Expanding ( , ( , , ), ) 0x x x x z = , by using the semi-Jacobi identity we have 

0 (( , , ), ) ( , )( , , ) ( , ( , , ), ) ( , , ( , , )) ( , , ( , , ))x x x x z x z x x x x x x x z z x x x x x z x x x= + + + −  
 
Which implies that ( , , )x x x  is in the center. Hence we have left one term and which gives 

( , )( , , )x z x x x 0=                                                                                                                            (12) 
 
Now let 2z x= −  in (12) we get 

2( , )( , , ) 0x x x x x− =  
 
Since                   2 2( , ) ( , )x x x x− = −  

2 2( )xx x x= − −  
( ) ( )x xx xx x= − +  

( , , )x x x=  
We obtain 

( , ( , , )) 0z x x x x =  
2( , )( , , ) 0x x x x x⇒ − =  

( , , )( , , ) 0x x x x x x⇒ =  
2( , , ) 0x x x⇒ =                                                                                                                                     (13) 

 
Let ( , , )q x x x= . 
That is the center element is q . 

So from (13) we get 
2 0q = . 

 
Now it is clear that the ideal 2 0q = belongs to R . Which concludes that R  is commutative as well as associative. 
 
By our assumption we said that R  is not commutative. 
 
That is the ideal generated by q  is zero. 

0q⇒ =  
So                              ( , , ) 0q x x x= =  
Hence the proof. 
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