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ABSTRACT 
We introduce the augmented leap index and augmented leap polynomial of a graph. In this paper, we determine the 
augmented leap index and augmented leap polynomial of wheel, gear, helm, flower, sunflower graphs. 
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1. INTRODUCTION 
 
By a graph, we mean a finite, undirected, connected without loops and multiple edges, Let G be a graph with vertex set 
V(G) and edge set E(G). The degree of a vertex v, denoted by d(v), is the number of vertices adjacent to v. The distance 
d(u, v) between any two vertices u and v of G is the number of edges in a shortest path connecting them. For a positive 
integer k and a vertex v in G, the open neighborhood of v in G is defined as Nk(v/G) = {u ∈ V(G): d(u, v) = k}. The       
k-distance degree dk(v) of v in G is the number of k neighbors of v in G, see [1]. 
 
The augmented Zagreb index [2] of G is defined as  

  
   

    

3

.
2uv E G

d u d vAZI G
d u d v

       

 
This index was studied in [3, 4] and also other augmented indices were introduced and studied in [5, 6]. 
 
We now propose the augmented leap index, defined as  
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Also we define the augmented leap polynomial as  
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Very recently, some different polynomials were studied, for example, in [7, 8, 9, 10, 11, 12, 13]. 
 
We consider wheels and some wheel type graphs see [14]. In this article, the augmented leap index and augmented leap 
polynomial of wheel graphs and some wheel type graphs are computed. 
 
2. RESULTS FOR WHEEL GRAPHS 
 
The wheel Wn is defined to be the join of cycle Cn and complete graph K1. The wheel Wn has n+1 vertices and 2n edges, 
see Figure 1. The vertex K1 is called apex and the vertices of Cn are called rim vertices. 
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Figure-1: Wheel Wn 

 
In Wn, there are two types of the 2-distance degree of edges as follows: 

E1 = {uv ∈ E(Wn) | d2(u) = 0, d2(v) = n – 3},        |E1| = n. 
E2 = {uv ∈ E(Wn) | d2(u) = d2(v) = n – 3},            |E2| = n. 

 
Theorem 1: Let Wn be a wheel with 2n edges, n≥3. Then 
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Proof: (a) From equation (1) and by cardinalities of the 2-distance degree of edge partition of  Wn, we obtain  
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(b) From equation (2) and by cardinalities of the 2-distance degree of edge partition Wn, we have  
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3. RESULTS FOR GEAR GRAPHS 
 
A gear graph is a graph obtained from Wn by adding a vertex between each pair of adjacent rim vertices and it is 
denoted by Gn. Clearly |V(Gn)|=2n+1 and |E(Gn)|=3n. A gear graph Gn is shown in Figure 2. 
 
 
 
 
 
 
 



V. R. Kulli /On Augmented Leap Index and its Polynomial of Some wheel Type Graphs / IRJPA- 9(4), April-2019. 

© 2019, RJPA. All Rights Reserved                                                                                                                                                                         46 

 

 
Figure-2: Gear graph Gn 

 
In Gn, there are two types of the 2-distance degree of edges as given below. 

E1= {uv ∈ E(Gn)| d2(u) = n, d2(v) = n – 1},  |E1| = n. 
E2 = {uv ∈ E(Gn)| d2(u) = 3, d2(v) = n – 1}, |E2| = 2n. 

 
Theorem 2: Let Gn be a gear graph with 3n edges, n ≥ 3. Then  
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(b) ALI(Gn, x) 
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Proof: (a) By using equation (1) and by cardinalities of the 2-distance degree of edge partition of Gn, we deduce  
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(b) By using equation (2) and by cardinalities of the 2-distance degree of edge partition of Gn, we derive  
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4. RESULTS FOR HELM GRAPHS 
 
Let Wn be a wheel with n+1 vertices. The helm graph, denoted by Hn, is a graph obtained from Wn by attaching an edge 
to each rim vertex of Wn. Clearly the graph Hn has 2n+1 vertices and 3n edges. A graph Hn is presented in Figure 3. 
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z  
Figure-3: Helm graph Hn 

 
In Hn, these are three types of the 2-distance degree of edges as follows. 

E1 = {uv∈ E(Hn)| d2(u) = n, d2 (v) = n – 1}, |E1| = n. 
E2 = {uv∈ E(Hn)| d2(u) =3 d2 (v) = n – 1},   |E2| = n. 
E3 = {uv∈ E(Hn)| d2(u) = d2 (v) = n – 1},     |E3| = n. 

 
Theorem 3: Let Hn be a helm graph with 3n edges, n ≥ 3. Then  
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(b) ALI(Hn, x) 
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Proof: From equation (1) and by cardinalities of the 2-distance degree of edge partition of Hn, we derive  
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(b) From equation (2) and by cardinalities of the 2-distance degree of edge partition of Hn, we deduce 
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5. RESULTS FOR FLOWER GRAPHS 
 
A graph is a flower graph which is obtained from a helm graph Hn by joining an end vertex to the apex of the helm 
graph and the resulting graph is denoted by Fln. A flower graph Fln has 2n+1 vertices and 4n edges. A graph Fln is 
presented in Figure 4. 
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Figure-4: A flower graph Fln 

 
In Fln, there are four types of the 2-distance degree of edges as follows: 

E1 = {uv∈ E(Fln)| d2(u) = 0, d2 (v) = n – 5},         |E1| = n. 
E2 = {uv∈ E(Fln)| d2(u) = 0, d2 (v) = n – 2},         |E2| = n. 
E3 = {uv∈ E(Fln)| d2(u) = n – 5, d2 (v) = n – 2},    |E3| = n. 
E4 = {uv∈ E(Fln)| d2(u) = d2 (v) = n – 5},         |E4| = n. 

 
Theorem 4: Let Fln be a flower graph with 4n edges, n ≥ 3. Then  
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Proof: From equation (1) and by cardinalities of the 2-distance degree of edge partition of Fln, we derive  
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(b) By using equation (2) and by cardinalities of the 2-distance degree of edge partition of Fln, we derive 
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6. RESULTS FOR SUNFLOWER GRAPHS 
 
A graph is a sunflower graph which is obtained from the flower graph Fln by attaching n end edges to the apex vertex 
and it is denoted by Sfn. A sunflower graph Sfn has 3n+1 vertices and 5n vertices. A graph Sfn is depicted in Figure 5. 
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Figure-5: A sunflower graph Sfn 

 
In Sfn, there are five types of the 2-distance degree of edges as follows: 

E1 = {uv∈ E(Sfn)| d2(u) = 0, d2 (v) = 3n – 4},  |E1| = n. 
E2 = {uv∈ E(Sfn)| d2(u) = 0, d2 (v) = 3n – 2},  |E2| = n. 
E3 = {uv∈ E(Sfn)| d2(u) = 0, d2 (v) = 3n – 1},  |E3| = n. 
E4 = {uv∈ E(Sfn)| d2(u) = d2 (v) = 3n – 4},                |E4| = n. 
E5 = {uv∈ E(Sfn)| d2(u) = 3n – 4, d2 (v) = 3n – 2},  |E5| = n. 

 
Theorem 5: Let Sfn be a sunflower graph with 5n edges, n ≥ 3. Then  
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Proof: (a) From equation (1) and by using cardinalities of the 2-distance degree of edge partition of Sfn, we obtain 
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(b) By using equation (2) and by cardinalities of the 2-distance degree of edge partition of Sfn, we deduce 
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