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ABSTRACT 
In Chemical Science, the methods of topological index computation can help to find out the biological, chemical and 
medical information of drugs. In this paper, we propose the arithmetic-geometric reverse and multiplicative arithmetic-
geometric reverse indices of a graph. Also we determine these reverse indices for silicate, chain silicate, hexagonal, 
oxide and honeycomb networks. 
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1. INTRODUCTION 
 
Chemical Graph Theory has an important effect on the development of Chemical Sciences. A topological index is a 
numerical parameter mathematically derived from the graph structure. Numerous topological indices have been 
considered in Theoretical Chemistry, especially in QSAR / QSPR study, see [1]. 
 
Let G be a finite, simple connected graph with vertex set V(G) and edge set E(G). The degree dG(v) of a vertex v is the 
number of vertices adjacent to v. Let ∆(G) denote the maximum degree among the vertices of G. The reverse vertex 
degree of a vertex v in G is defined as cv = ∆(G) – dG(v) + 1. The reverse edge connecting the reverse vertices u and v 
will be denoted by uv. For other undefined notations and terminology, readers are referred to [2]. 
 
Recently, Kulli [3] introduced the geometric-arithmetic reverse index of a graph G and it is defined as 
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We now define the arithmetic - geometric reverse index of a graph as follows:  
 
The arithmetic - geometric reverse index of a graph G is defined as 
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In [4], Kulli introduced the multiplicative geometric-arithmetic reverse index of a graph G and it is defined as 
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We now introduce the multiplicative arithmetic-geometric reverse index of a graph as follows:  
 
The multiplicative arithmetic- geometric reverse index of a graph G is defined as 
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For more information and recent results about reverse indices see [5, 6, 7]. Also some topological indices were studied, 
for example, in [8, 9]. 
 
Silicates are very important elements of Earth's crust. Sand and several minerals are constituted by silicates. The 
tetrahedron is a basic unit of silicates, in which the central vertex is silicon vertex and the corner vertices are oxygen 
vertices. For networks see [10]. In this paper, the arithmetic-geometric reverse index and the multiplicative arithmetic-
geometric index of certain networks are computed. 
 
2. RESULTS FOR SILICATE NETWORKS 
 
Silicates are obtained by fusing metal oxide or metal carbonates with sand. A silicate network is symbolized by SLn, 
where n is the number of hexagons between the center and boundary of SLn. A 2-dimensional silicate network is 
presented in Figure 1. 

 

 
Figure-1: A 2-dimensional silicated network 

 
Let G be the graph of a silicate network SLn. From Figure 1, it is easy to see that the vertices of SLn are either of degree 
3 or 6. Therefore ∆(G) = 6. Clearly we have cu = ∆(G) – dG(u) + 1 = 7 – dG(u). The graph G has 15n2 + 3n vertices and 
36n2 edges. In G, by algebraic method, there are three types of edges based on the degree of end vertices of each edge 
as follows: 
 E33 = {uv ∈ E(G) | dG(u) = dG(v) = 3}, |E33| = 6n. 
 E36 = {uv ∈ E(G) | dG(u) =3, dG(v) = 6}, |E36| = 18n2 + 6n. 
 E66 = {uv ∈ E(G) | dG(u) = dG(v) = 6}, |E66| = 18n2 – 12n. 
 Thus there are three types of reverse edges as given in Tabe 1. 
 

cu, cv\ uv ∈ E(G) (4, 4) (4, 1) (1, 1) 
Number of edges 6n 18n2 + 6n 18n2 – 12n 

Table-1: Reverse edge partition of SLn 
  
Theorem 1: The arithmetic-geometric reverse index of a silicate network SLn is 

 AGC(SLn) = 281 3 .
2 2

n n  

 
Proof: Let G be the molecular graph of SLn. By using equation (1) and Table 1, we deduce 
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Theorem 2: The multiplicative arithmetic-geometric reverse index of a silicate network SLn is 

  
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Proof: Let G be the molecular graph of SLn. By using equation (2) and Table 1, we deduce 
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3. RESULTS FOR CHAIN SILICATE NETWORKS 
 
We now consider a family of chain silicate networks. This network is symbolized by CSn and is obtained by arranging 
n≥2 tetrahedral linearly, see Figure 2. 

 
Figure-2: Chain silicate network 

 
Let G be the graph of a chain silicate network CSn with 3n+1 vertices and 6n edges. From Figure 2, it is easy to see that 
the vertices of CSn are either of degree 3 or 6. Therefore ∆(G) = 6. Thus cu = ∆(G) – dG(u) + 1 = 7 – dG(u). In G, by 
algebraic method, there are three types of edges based on the degree of end vertices of each edge as follows: 
 E33 = {uv ∈ E(G) | dG(u) = dG(v) = 3}, |E33| = n + 4. 
 E36 = {uv ∈ E(G) | dG(u) =3, dG(v) = 6}, |E36| = 4n – 2. 
 E66 = {uv ∈ E(G) | dG(u) = dG(v) = 6}, |E66| = n – 2. 
 Thus there are three types of reverse edges as given in Tabe 2. 
 

cu, cv\ uv ∈ E(G) (4, 4) (4, 1) (1, 1) 
Number of edges n + 4 4n – 2 n – 2 

Table-2: Reverse edge partition of CSn 
 
Theorem 3: The arithmetic-geometric reverse index of a chain silicate network CSn is 

   17 .
2nAGC CS n   

 
Proof: Let G be the molecular graph of CSn. By using equation (1) and Table 2, we derive 
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Theorem 4: The multiplicative arithmetic-geometric reverse index of a chain silicate network CSn is 
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Proof: Let G be the molecular graph of CSn. By using equation (2) and Table 2, we derive 
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4. RESULTS FOR HEXAGONAL NETWORKS 
 
It is known that there exist three regular plane tilings with composition of some kind of regular polygons such as 
triangular, hexagonal and square. Triangular tiling is used in the construction of hexagonal networks. This network is 
symbolized by HXn, where n is the number of vertices in each side of hexagon. A hexagonal network of dimension six 
is shown in Figure 3. 

 
Figure-3: Hexagonal network of dimension six 

 
Let G be the graph of a hexagonal network HXn. The graph G has 3n2–3n+1 vertices and 9n2–15n+6 edges. From 
Figure 3, it is easy to see that the vertices of HXn are either of degree 3, 4 or 6. Therefore ∆(G)=6 and δ(G) = 3. Thus     
cu = ∆(G) – dG(u) + 1 = 7 – dG(u). In G, by algebraic method, there are five types of edges based on the degree of end 
vertices of each edge as follows: 
 E34 = {uv ∈ E(G) | dG(u) = 3, dG(v) = 4}, |E34| = 12. 
 E36 = {uv ∈ E(G) | dG(u) = 3, dG(v) = 6}, |E36| = 6. 
 E44 = {uv ∈ E(G) | dG(u) = dG(v) = 4}, |E44| = 6n – 18. 
 E46 = {uv ∈ E(G) | dG(u) = 4, dG(v) = 6}, |E46| = 12n – 24. 
 E66 = {uv ∈ E(G) | dG(u) = dG(v) = 6}, |E66| = 9n2 – 33n + 30. 
 
 Thus there are five types of reverse edges as given in Table 3. 
 

cu, cv\ uv ∈ E(G) (4, 3) (4, 1) (3, 3) (3, 1) (1, 1) 
Number of edges 12 6 6n – 18 12n – 24 9n2 – 33n + 30 

Table-3: Reverse edge partition of HXn 
 

Theorem 5: The arithmetic-geometric reverse index of a hexagonal network HXn is 

   2 24 39 279 27 .
23 3nAGC HX n n
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Proof: Let G be the molecular graph of HXn. By using equation (1) and Table 3, we obtain 
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Theorem 6: The multiplicative arithmetic-geometric reverse index of a hexagonal network HXn is 
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Proof: Let G be the molecular graph of HXn. By using equation (2) and Table 3, we obtain 
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5. RESULTS FOR OXIDE NETWORKS 
 
The oxide networks are of vital importance in the study of silicate networks. An oxide network of dimension n is 
denoted by OXn. A 5 -dimensional oxide network is shown in Figure4. 

 
Figure-4: Oxide network of dimension 5 

 
Let G be the graph of an oxide network OXn. From Figure 4, it is easy to see that the vertices of OXn are either of 
degree 2 or 4. Therefore ∆(G)=4. Thus cu = ∆(G) – dG(u) + 1 = 5 – dG(u). By calculation, we obtain that G has 9n2+3n 
vertices and 18n2 edges. In G, by algebraic method, there are two types of edges based on the degree of end vertices of 
each edge as follows: 
 E24 = {uv ∈ E(G) | dG(u) = 2, dG(v) = 4}, |E24| = 12n. 
 E44 = {uv ∈ E(G) | dG(u) = dG(v) = 4}, |E44| = 18n2 – 12n. 
 Thus there are two types of reverse edges as given in Tabe 4. 
 

cu, cv\ uv ∈ E(G) (3, 1) (1, 1) 
Number of edges 12n 18n2 – 12n 
Table-4: Reverse edge partition of OXn 

 
Theorem 7: The arithmetic-geometric reverse index of an oxide network OXn is 
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Proof: Let G be the molecular graph of OXn. By using equation (1) and Table 4, we deduce 
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Theorem 8: The multiplicative arithmetic-geometric reverse index of an oxide network OXn is 
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Proof: Let G be the molecular graph of OXn. By using equation (2) and Table 4, we deduce 
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6. RESULTS FOR HONEYCOMB NETWORKS 
 
Honeycomb networks are useful in Computer Graphics and Chemistry. A honeycomb network of dimension n is 
denoted by HCn, where n is the number of hexagons between central and boundary hexagon. A 4-dimensional 
honeycomb network is shown in Figure 5. 

 

 
Figure-5: A 4-dimensional honeycomb network 

 
Let G be the graph of a honeycomb network HCn. From Figure 5, it is easy to see that the vertices of HCn are either of 
degree 2 or 3. Thus ∆(G) = 3. Therefore cu = ∆(G) – dG(u) + 1 = 4 – dG(u). By calculation, we obtain that G has 6n2 
vertices and 9n2–3n edges. In G, by algebraic method, there are three types of edges based on the degree of end vertices 
of each edge as follows: 
 E22 = {uv ∈ E(G) | dG(u) = dG(v) = 2}, |E22| = 6. 
 E23 = {uv ∈ E(G) | dG(u) = 2, dG(v) = 3}, |E23| = 12n – 12. 
 E33 = {uv ∈ E(G) | dG(u) = dG(v) = 3}, |E33| = 9n2 – 15n + 6. 
 
 Thus there are three types of reverse edges as given in Tabe 5. 
 

cu, cv\ uv ∈ E(G) (2, 2) (2, 1) (1, 1) 
Number of edges 6 12n – 12 9n2 – 15n + 6 

Table-5: Reverse edge partition of HCn 
 
Theorem 9: The arithmetic-geometric reverse index of a honeycomb network HCn is 
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Proof: Let G be the molecular graph of HCn. By using equation (1) and Table 5, we deduce 
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Theorem 10: The multiplicative arithmetic-geometric reverse index of a honeycomb network HCn is 
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Proof: Let G be the molecular graph of HXn. By using equation (2) and Table 5, we obtain 
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