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ABSTRACT 
In this paper, strongly-n-Ding projective modules are introduced and investigated, and we get a lot of interesting 
properties. 
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1. INTRODUCTION 
 
Throughout the paper, R is a commutative ring with identity element, and all R-module are unital. If M is any               
R-module, we use pdR(M) and DpdR(M) to denote projective and Ding projective dimensions of M. 
 
In [5], the author introduced strongly Gorenstein flat module and strongly Gorenstein flat dimension, which are defined 
as follows: 
 
Definition 1.1: (5) Let n be a positive integer. An R-module M is called strongly Gorenstein flat module (we called Ding 
projective module) if there is an exact sequence 

P··· → P1 → P0 → P0 → P1 → ··· 
of projective right R-modules with M = ker(P0 → P1) such that Hom(−,flat) leaves the sequence exact. 
 
Definition 1.2: (5) For a right R-module M, let SGfd(M) (we called Dpd(M)) denote the infimum of the set of n such 
that there exists an exact sequence 0 → Gn → ··· → G1 → G0 → M → 0 of right R-modules, where each Gi is a strongly 
Gorenstein flat and call SGfd(M) the strongly Gorenstein flat dimension of M(we called Ding projective dimension). 
 
The main purpose of this paper is to study some properties of strongly-n-Ding projective modules and we get some 
interesting results. 
 
2. STRONGLY-n-DING PROJECTIVE MODULE 
 
In this section, we will study the properties of strongly-n-Ding projective modules. 
 
Lemma 2.1: (11) A R-module M is strongly Ding projective if and only if there exists an exact sequence 0 → M → P → 
M → 0, where P is projective and Ext1

R(M,F) = 0 for any flat F. 
 
Definition 2.2: A left R-module M is said to be strongly-n-Ding projective modules if there exists a short exact sequence 
of left R-module 0 → M → P → M → 0 with pdR(P) ≤ n and Ext  for any flat module F. 
 
Proposition 2.3: Let M be a strongly-n-Ding projective module and n be a integer. If 0 → N → Pn → ··· → P1 → M → 
0 is an exact sequence, where P1,··· ,Pn are projective, then N is strongly Ding projective module and DpdR(K) ≤ n. 
 
Proof: The case n = 0 is clear by Lemma 2.1. 
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Since M is strongly-n-Ding projective module, there exists an exact sequence 0 → M → P → M → 0 with pdR(P) ≤ n. 
Consider the projective resolution of M 

0 → N → Pn → ··· → P1 → M → 0 
Then there exists a R-module Q such that the diagram commutative 

 
 

Because pdR(P) ≤ n, then Q is projective module, and Ext1
R(N,K) = Ext 0 for any flat module F, 

therefore N is strongly Ding projective module by Lemma2.1, hence DpdR(K) ≤ n.  
 
Proposition 2.4: If (Mi)i∈I is a family of strongly-n-Ding projective modules, then ⊕i∈IMi is strongly-n-Ding projective 
module. 
 
Proof: Since Mi is strongly-n-Ding projective module, then for every i, there exist short exact sequence 0 → Mi → Pi → 
Mi → 0, where pdR(Pi) ≤ n, and Extn

R
+1(Mi,F) = 0 for every flat R-module F. Consider the exact sequence 

0 → ⊕i ∈IMi → ⊕i ∈IPi → ⊕i ∈IMi → 0 
That pdR(⊕i∈IPi) ≤ sup{pdR(Pi) | i ∈ I} and for every flat R-module F, Extn

R
+1(⊕i∈IMi,F) = Π Extn+1(Mi,F) = 0, then 

⊕i∈IMi is strongly-n-Ding projective module.  
 
Theorem 2.5: Let M be a module and n be a integer. If DpdR(M) ≤ n, then M is a direct summand of a strongly-n-Ding 
projective module. 
 
Proof: The case n = 0 is clear by [11, Theorem 2.3]. Next we assume that n ≥ 1, since 1 ≤ DpdR(M) ≤ n, then there 
exists a short exact sequence 0 → K → G → M → 0, where G is Ding projective module and pdR(K) ≤ n−1. According 
to the definition of Ding projective module, we have the short exact sequence 0 → G → P → G0 → 0, where P is 
projective module and G0 is Ding projective module. Then we obtain the following pushout diagram: 
 

 
 

The short exact sequence 0 → K → P → D → 0 shows that pdR(D) ≤ pdR(K)+1 ≤ n. From the left half of a complete 
projective resolution of M, we get an exact sequence 

0 → Gn → Pn → ··· → P1 → M → 0 
 
where P1,··· ,Pn are projectives, and Gn is Ding projective. Putting the cokernel into this diagram, we obtain exact 
sequence 
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0 → G1 → P1 → M → 0 
0 → G2 → P2 → G1 →0 

  
0 → Gn → Pn → Gn−1 → 0 

Then DpdR(Gi) ≤ n−1 ≤ n for all 1 ≤ i ≤ n. According to the projective resolution of Gn 
··· → Pn+2 → Pn+1 → Gn → 0 

 
we get short exact sequence 0 → Gi+1 → Pi+1 → Gi → 0 for all i ≥ n, then Gi is Ding projective module by [11,Theorem 
1.15]. On the other hand, because G0 is Ding projective, therefore 

0 → G0 → P1 → P2 → P3 → ··· 
 
Thus Gi = Im((Pi → Pi+1) is Ding projective for all i ≥ n. For all i ≥ 0, we get short exact sequence  
0 → Gi → Pi+1 → Gi+1 → 0, hence, we have 

  
0 → G1 → P2 → G2 → 0 
0 → G0 → P1 → G1 → 0 
0 → M → D → G0 → 0 
0 → G1 → P1 → M → 0 
0 → G2 → P2 → G1 → 0 

  
From the above sequence, we get a short exact sequence 0 → N → Q → N → 0, where N = ⊕i≥1Gi ⊕ M ⊕i≥0 Gi,         
Q = ⊕i≥1Pi ⊕ D ⊕i≥1 Pi, obviously, pdR(Q) = pdR(D) ≤ n, DpdR(N) = sup{DpdR(Gi), DpdR(Gi), DpdR(M)} ≤ n. Then N is 
a strongly-n-Ding projective module and M is a direct summand of N.  
 
Proposition 2.6: For any module M and integers n, the following are equivalent: 

(1) M is strongly-n-Ding projective module. 
(2) There exists a short exact sequence 0 → M → Q → M → 0, where pdR(Q) ≤ n, and Ext  for 

any module F with finite flat dimension and for all i > n. 
(3) There exists a short exact sequence 0 → M → Q → M → 0, where pdR(Q) < ∞, and Exti

R(M,F) = 0 for any 
module F with finite flat dimension and for all i > n. 

 
Proof: Using standard arguments, this follows immediately from the definition of strongly-n-Ding projective modules.
  
 
Proposition 2.7: Let M be an strongly-n-Ding projective module. Then M admits a surjective homomorphism                
ϕ : N → M, where N is strongly Ding projective module, and K = kerϕ satisfies pdR(K) = DpdR(M) − 1 ≤ n − 1 
 
Proof: Pick an exact sequence, 0 → N ′  → Pn → ··· → P1 → M → 0, where P1,...,Pn are projective modules and N ′  is 
strongly Ding projective module by proposition 2.3. By definition of strongly Ding projective module, hence there is an 
exact 0 → N ′  → Q → ··· → Q → N ′ → 0, where Q is projective module, and such that the functor HomR(−,F) leaves 
this sequence exact, wherever F is flat. 
 
Thus there exists homomorphism Q → Pi for i = 1, 2,...,n, and N → M, such that the following diagram is commutative: 

 
This diagram gives a chain map between complex 

 
which induces an isomorphism in homology. Its mapping cone 

0 → Q → Pn ⊕ Q → ··· → P1 ⊕ N ′ → M → 0 
is exact, and all the modules in it, exact for P1 ⊕ N ′  (which is strongly Ding projective) are projective. Hence the 
kernel K of ϕ : P1 ⊕ N ′  →M satisfies pdR(K) = DpdR(M) − 1 ≤ n − 1  
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Proposition 2.8: Let 0 → N → P → N ′ → 0 be an exact sequence, where P is projective R-module and              
DpdR( N ′ ) = n < ∞. Then 

(1) If N ′ is strongly Ding projective module, then so is N. 
(2) If N ′ is strongly-n-Ding projective module for any n ≥ 1, then N is strongly (n-1)-Ding projective module and 

DpdR(N) = n − 1. 
 
Proof:  

(1) It is clear. 
(2) Since N ′ is strongly-n-Ding projective module, then there exists a short exact sequence 0 → N ′  → Q → N ′

→ 0, where pdR(Q) ≤ n. Because DpdR( N ′ ) = n, then pdR(Q) = n by proposition 2.3. On the other hand, we 
have a commutative diagram: 

 
 

Because P is projective module, we get that pdR( Q′ ) = n−1. Since DpdR( N ′ ) = n, we conclude DpdR(N) = n − 1, 
Hence N is strongly-n − 1-Ding projective module. 
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