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ABSTRACT 

In this paper the notions of g-minimal regular spaces and g-minimal normal spaces are introduced and studied in 
topological spaces. A topological space (X, τ) is said to be generalized minimal regular (briefly   g-mi regular) space if 
for every g-mi closed set F of X and each point x∈ Fc there exists disjoint open sets U and V of X such that x∈U and F⊂V. 
A topological space (X, τ) is said to be generalized minimal normal (briefly   g-mi normal) space if for any pair of disjoint 
g-mi closed sets A and B, there exist disjoint open sets U and V such that A⊂ U and B⊂V. Some basic properties of such 
spaces are obtained.  
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1. INTRODUCTION AND PRELIMINARIES 
 
N. Levine [2], in 1970 introduced generalized closed (g-closed) sets in topological spaces as a generalization of closed 
sets. Since then, many concepts related to g-closed sets were defined and investigated. B. M. Munshi [6] has introduced 
the notions of g-regular spaces and g-normal spaces in topological spaces. Further T. Noiri and V. Popa [9] studied on 
g-regular spaces and g-normal spaces. Recently minimal open sets and maximal open sets in topological spaces were 
introduced and characterized by F.Nakaoka and N. Oda ([7], [8]). In section 2, we obtain new characterizations of 
g-minimal regular spaces whereas in section 3, g-normal spaces are characterized and studied.. The main purpose of this 
paper is to obtain several preservation theorems of g-mi regular spaces and g-mi normal spaces. 
 
Throughout this paper X, Y and Z represent nonempty topological spaces on which no separation axioms   are   assumed 
unless otherwise mentioned.  For a subset A of a topological space X, cl (A), int (A) and Ac denote the closure of A, the 
interior of A and the complement of A in X, respectively. Let us recall the following definitions, which are useful in the 
sequel. 
 
Definition 1.1: A proper nonempty subset A of a topological space (X, τ) is called  

(i) a minimal open (resp. minimal closed) set [7]  if any open (resp. closed) subset of X which is contained in A, is 
either A or φ. 

(ii) a maximal open (resp. maximal closed) set [8] if any open (resp. closed) set which contains A, is either A or X. 
 
Definition 1.2: A subset A of a topological space (X, τ) is called  

(i) a generalized closed[2]  (briefly g-closed) set if cl (A) ⊆ U whenever A ⊆ U and U is an open set in X. 
(i) a generalized minimal closed (briefly g-mi closed) set if cl (A) ⊆ U whenever A ⊆ U and U is a minimal open set 

in X. 
(ii) a generalized maximal open (briefly g-ma open) set iff Ac is a generalized minimal closed set in X.   
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Definition 1.3: A topological space (X, τ) is said to be  

(i) g-regular [6] if for each g-closed set F of X and each point x∈Fc, there exist disjoint open sets U and V of X such 
that x∈U and F ⊂ V. 

(ii) g-normal[6] if for any pair of disjoint g-closed sets A and B, there exist disjoint open sets U and V such that         
A ⊂ U and B ⊂ V. 

 
Definition1.4: A mapping f: (X, τ) →(Y, σ) is said to be  

(i) generalized minimal continuous (briefly g-mi continuous) map if the inverse image of every minimal closed set 
in Y is g-minimal closed set in X. 

(ii) generalized minimal irresolute (briefly g-mi irresolute) map if the inverse image of every g- minimal closed set 
in Y is a g-minimal closed set in X. 

 
Definition 1.5: A map ƒ: (X, τ) → (Y, σ) is said to be generalized minimal∗ closed (briefly g- mi

∗ closed) map if the 
image of every g-minimal closed set in X is a g-minimal closed set in Y. 
 
2. GENERALIZED MINIMAL REGULAR SPACES 
 
Definition 2.1: A topological space (X, τ) is said to be generalized minimal regular (briefly g-mi regular) space if for 
every g-mi closed set F of X and each point x∈ Fc there exists disjoint open sets U and V of X such that x∈U and F⊂V. 
 
Theorem 2.2: Every g-regular space is a g-mi regular space. 
 
Proof: Let X be a g-regular space and F be a g-mi closed set in X such that for every x∈X, x∈ Fc. Since every g-mi closed 
set is a g-closed set in X, F is a g-closed set in X. But X is g-regular space. Therefore for each g-closed set F in X and each 
point x∈ Fc, there exists disjoint open sets U and V in X such that x∈U and F⊂V. Thus for every g-mi closed set F in X 
and each point x∈ Fc, there exist disjoint open sets U and V in X such that x∈U and F⊂V. Hence X is a g-mi regular space. 
 
Remark 2.3:  Converse of the Theorem 1.2.2 need not be true. 
 
Example 2.4: Let X = {a, b, c, d} with τ ={φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, X}. 
Open sets: φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}, {a, b, d},  {b, c, d}, X. 
Closed sets: φ, {a}, {c}, {d}, {a, c}, {a, d}, {b, d}, {c, d}, {a, b, d},{a, c, d},{b, c, d}, X. 
g-closed sets: φ, {a}, {c}, {d}, {a, c}, {a, d},{b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, X. 
 
Here  (X, τ) is a g-mi regular space but not a g-regular space. Since for a  g-closed set  F = {d}, Fc = {a, b, c} so that for    
b∈ Fc = {a, b, c}, there do not exist disjoint open sets U and V such that b∈U and F⊂V. 
 
Theorem 2.5: In a topological space (X, τ), the following statements are equivalent. 

(i) (X, τ) is a g-mi regular space. 
(ii) For each x∈X and for each g-ma open set U containing x, there exists an open set V such that x∈V⊂cl (V) ⊂ U. 
(iii) For each x∈X and for each g-mi closed set F, such that x∈ Fc there exists an open set V such that x ∈ V and          

cl (V) ∩ F =φ. 
 
Proof:  
(i)⇒(ii): Let (X, τ) be a g-mi regular space and x∈X. Let U be any g-ma open set containing x. Then Uc is a g-mi closed set 
such that x∉ Uc. Since X is a  g-mi regular space, there exist disjoint open sets V and W of X such that x∈V and Uc ⊂W.  
 
Now V ∩ W = φ implies V ⊂ Wc which implies  cl (V) ⊂ cl (Wc) = Wc which implies that cl (V) ⊂ Wc ……….. (a),  
 
since Wc is a closed set. Again since Uc ⊂W, Wc ⊂U…….. (b). 
 
Therefore from (a) and (b), x∈V ⊂ cl (V) ⊂ Wc ⊂ U. Thus x∈V⊂cl (V)⊂ U. 
 
(ii)⇒(iii): For each x∈X let F be any g-mi closed set in X such that x∈ Fc. Then Fc is a g-ma open set containing x. By (ii) 
there exists an open set V such that x∈V⊂ cl (V)⊂ Fc, which implies x∉F. Therefore cl (V) ∩F = φ. 
 
(iii) ⇒(i): Let x∈X and let F be any g-mi closed set in X such that x∈ Fc. By (iii) there exists an open set V such that x∈V 
and cl (V) ∩ F =φ. Since cl (V) is a closed set,  [cl (V)] c is an open set.  Now cl (V) ∩ F = φ implies that F ⊂  [cl (V)] c. 
Hence for every g-mi closed set F in X and for each point x∈ Fc, there exist disjoint open sets V and [cl (V)] c such that 
x∈V and  F ⊂  [cl (V)] c. Thus (X,τ) is a g-mi regular space. 
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Theorem 2.6: If ƒ: (X, τ) →(Y, σ) is a bijection, g-mi irresolute, open map and X is a g-mi regular space, then Y is a g-mi 
regular space. 
 
Proof: Let F be any g-mi closed set in Y and y ∈ Fc. Since ƒ is a bijective   g-mi irresolute map, there exists x∈X such that 
x = ƒ− | (y) which implies ƒ(x) = y and ƒ− |(F) is a g-mi closed set in X. Also x ∈[ƒ− |(F)] c. Since X is a g-mi regular space, 
by definition for each g-mi closed set ƒ− |(F) in X such that x ∈[ƒ− |(F)] c, there exists disjoint open sets U and V in X such 
that x∈ U and ƒ− |(F) ⊂V. But ƒ is a bijective open map. Therefore ƒ(U) and ƒ(V) are open sets in Y and ƒ(U) ∩ ƒ(V) = φ. 
Since U∩V=φ, ƒ(U∩V) = φ which implies that ƒ(U) ∩ ƒ(V) = φ. Now x∈ U implies ƒ(x)∈ ƒ(U) which implies that             
y ∈ ƒ(U) and ƒ− |(F) ⊂V implies F⊂ƒ(V). Therefore for each g-mi closed set F of Y and for each y ∈ Fc, there exist disjoint 
open sets ƒ(U) and ƒ(V) in Y such that y ∈ ƒ(U) and F⊂ƒ(V). Thus Y is a g-mi regular space. 
 
Theorem 2.7:  If ƒ: (X, τ) →(Y, σ) is a continuous, g-mi

* closed, injection and Y is a g-mi regular space, and then X is a 
g-mi regular space. 
 
Proof: Let F be any g-mi closed set of X and x ∈ Fc. Since ƒ is a continuous g-mi

* closed map, ƒ(F) is a g-mi closed set in 
Y and ƒ(x)∈[ ƒ(F)]c. Also since Y is a g-mi regular space, there exist disjoint open sets U and V such that ƒ(x)∈U and   
ƒ(F) ⊂ V which implies that x∈ƒ− |(U) and F⊂ ƒ− |(V) and ƒ− |(U) ∩ƒ− |(V) = φ. Therefore X is a g-mi regular space. 
 
3. GENERALIZED MINIMAL NORMAL SPACES 
 
Definition 3.1: A topological space (X, τ) is said to be generalized minimal normal (briefly g-mi normal) space if for any 
pair of disjoint g-mi closed sets A and B, there exist disjoint open sets U and V such that A⊂ U and B⊂V. 
 
Theorem 3.2: Every g-normal space is a g-mi normal space. 
 
Proof: Let (X, τ) be any g-normal space and let A and B be any pair of disjoint g-mi closed sets in X. Since every g-mi 
closed set is a g-closed set, A and B are g-closed set in X. By hypothesis, for any pair of disjoint g-closed sets A and B 
there exists disjoint open sets U and V such that A⊂ U and B⊂V. Therefore for any pair of disjoint g-mi closed sets A and 
B, there exists disjoint open sets U and V such that A⊂ U and B⊂V. Hence (X, τ) is g-mi normal space. 
 
Remark 3.3:  Converse of the Theorem 1.3.2 need not be true. 
 
Example 3.4: Let X = {a, b, c, d} with τ ={φ, {b}, {c}, {a, d}, {b, c}, {a, b, d}, {a, c, d}, X}. 
Open sets: φ, {b}, {c}, {a, d}, {b, c}, {a, b, d}, {a, c, d}, X.. 
Closed sets: φ, {b}, {c}, {a, d}, {b, c}, {a, b, d}, {a, c, d}, X. 
g-closed sets: φ, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d},  {c, d},  {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X.. 
Here  (X, τ) is a g-mi normal space but not a g-normal space. Since  
For disjoint g-closed sets {a} and {d} there do not exist disjoint open sets U and V such that {a}⊂ U and {d}⊂V. 
 
Theorem 3.5: In a topological space (X, τ), the following statements are equivalent. 

(i) (X, τ) is a g-mi normal space. 
(ii) For each g-mi closed set A and each g-ma open set U such that A⊂ U, there exists an open set V such that  

A⊂ V ⊂ cl (V) ⊂U. 
(iii) For every pair of disjoint g-mi closed sets A and B of X, there exists an open set V such that A⊂V and                    

cl (V) ∩ B = φ. 
Proof:  
(i) ⇒ (ii): Let (X, τ) be any g-mi normal space. Let A be a g-mi closed set A and U be g-ma open set such that A⊂ U. Then 
Uc is a g-mi closed set in X. Now A and Uc are disjoint g-mi closed sets. By (i), there exist disjoint open sets V and W such 
that A ⊂ V and Uc ⊂ W. Now V ∩W = Φ implies V ⊂ Wc which implies   cl (V) ⊂ cl (Wc) = Wc which implies                      
cl (V) ⊂ Wc, since Wc is a closed set. Again, since Uc ⊂ W, Wc ⊂ U. Therefore A⊂ V⊂ cl (V) ⊂ U. 
 
(ii) ⇒(iii): Let A and B be any pair of disjoint g-mi closed sets so that A ∩ B = φ then A⊂Bc. Since A is a g-mi closed set 
and Bc is a g-ma open set such that A⊂Bc, by (ii) there exists an open set V such that A⊂ V⊂ cl (V) ⊂ Bc which   implies cl 
(V) ∩ B = φ. 
 
(iii) ⇒(i): Let A and B be any pair of disjoint g-mi closed sets in X. 
 
By (iii), there exists an open set V such that A⊂V and cl (V) ∩ B = φ which implies A⊂V and B ⊂ [cl (V)] c. Therefore for 
any pair of disjoint g-mi closed sets in X, there exists disjoint open sets V and [cl (V)]c such that  A ⊂ V and  B ⊂ [cl (V)]c. 
Therefore (X, τ) is a g-mi normal space. 
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Theorem 3.6: If ƒ: (X, τ) → (Y, σ) is bijection, g-mi irresolute, open map and X is a g-mi normal space, then Y is a g-mi 
normal space. 
 
Proof:  Let A and B be any pair of disjoint g-mi closed sets in Y. Since ƒ is a g-mi irresolute map, ƒ− | (A) and ƒ− | (B) are 
g-mi closed sets in X and hence ƒ− |(A) ∩ƒ− |(B) = ƒ− |(A∩B) = φ. But X is a g-mi normal space, so there exists disjoint open 
sets U and V such that ƒ− |(A) ⊂ U and ƒ− |(B) ⊂V. Since ƒ is open, bijective map, A ⊂ ƒ (U), B ⊂ƒ (V) and ƒ (U) ∩ƒ (V) 
= φ. Also ƒ (U) and ƒ (V) are open in Y. This shows that Y is a g-mi normal space. 
 
Theorem 3.7:  If ƒ: (X, τ) → (Y, σ) is continuous, g-mi

* closed, injection and Y is a g-mi normal space, and then X is a 
g-mi normal space. 
 
Proof:  Let A and B be any pair of disjoint g-mi closed sets in X. Since ƒ is a g-mi

* closed map, ƒ(A) and ƒ(B) are g-mi 
closed sets in Y and   ƒ(A) ∩ƒ(B) = φ. But Y is a g-mi normal space. So there exist disjoint open sets U and V such that 
ƒ(A) ⊂ U and ƒ(B) ⊂V. Thus we obtain A ⊂ ƒ− |(U) and B ⊂ ƒ− |(V) and ƒ− |(U) ∩ƒ− |(V) = φ. Since ƒ is a continuous map, 
ƒ− |(U) and ƒ− |(V) are open sets in X. This shows that X is a g-mi normal space. 
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