International Research Journal of Pure Algebra-4(12), 2014, 666-669 Available online through www.rjpa.info

ON GENERALIZED MINIMAL REGULAR SPACES AND GENERALIZED MINIMAL NORMAL SPACES

SUWARNLATHA N. BANASODE

Department of Mathematics, K. L. E. Society's Raja Lakhamagouda Science Institute, Belgaum - 590001. Karnataka, India.

(Received On: 23-11-14; Revised & Accepted On: 08-12-14)

ABSTRACT

In this paper the notions of g-minimal regular spaces and g-minimal normal spaces are introduced and studied in topological spaces. A topological space (X, τ) is said to be generalized minimal regular (briefly g-m_i regular) space if for every g-m_i closed set F of X and each point $x \in F^c$ there exists disjoint open sets U and V of X such that $x \in U$ and $F \subset V$. A topological space (X, τ) is said to be generalized minimal normal (briefly g-m_i normal) space if for any pair of disjoint g-m_i closed sets A and B, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$. Some basic properties of such spaces are obtained.

2000 Mathematics Subject Classification: 54A05, 54C08 and 54F65.

Key Words and phrases: minimal closed, g-closed, $g-m_i$ closed, $g-m_a$ open, g-regular, g-normal, $g-m_i$ continuous, $g-m_i$ irresolute and $g-m_i^*$ closed map.

1. INTRODUCTION AND PRELIMINARIES

N. Levine [2], in 1970 introduced generalized closed (g-closed) sets in topological spaces as a generalization of closed sets. Since then, many concepts related to g-closed sets were defined and investigated. B. M. Munshi [6] has introduced the notions of g-regular spaces and g-normal spaces in topological spaces. Further T. Noiri and V. Popa [9] studied on g-regular spaces and g-normal spaces. Recently minimal open sets and maximal open sets in topological spaces were introduced and characterized by F.Nakaoka and N. Oda ([7], [8]). In section 2, we obtain new characterizations of g-minimal regular spaces whereas in section 3, g-normal spaces are characterized and studied. The main purpose of this paper is to obtain several preservation theorems of $g-m_i$ regular spaces and $g-m_i$ normal spaces.

Throughout this paper X, Y and Z represent nonempty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a topological space X, cl (A), int (A) and A^c denote the closure of A, the interior of A and the complement of A in X, respectively. Let us recall the following definitions, which are useful in the sequel.

Definition 1.1: A proper nonempty subset A of a topological space (X, τ) is called

- (i) a minimal open (resp. minimal closed) set [7] if any open (resp. closed) subset of X which is contained in A, is either A or φ.
- (ii) a maximal open (resp. maximal closed) set [8] if any open (resp. closed) set which contains A, is either A or X.

Definition 1.2: A subset A of a topological space (X, τ) is called

- (i) a generalized closed[2] (briefly g-closed) set if cl (A) \subseteq U whenever A \subseteq U and U is an open set in X.
- (i) a generalized minimal closed (briefly g-m_i closed) set if cl (A) \subseteq U whenever A \subseteq U and U is a minimal open set in X.
- (ii) a generalized maximal open (briefly g-m_a open) set iff A^c is a generalized minimal closed set in X.

*Corresponding author: Suwarnlatha N. Banasode

Department of Mathematics, K. L. E. Society's Raja Lakhamagouda Science Institute, Belgaum – 590001, Karnataka, India.

Suwarnlatha N. Banasode /

On Generalized Minimal Regular Spaces and Generalized Minimal Normal Spaces / IRJPA- 4(12), Dec.-2014.

Definition 1.3: A topological space (X, τ) is said to be

- (i) g-regular [6] if for each g-closed set F of X and each point $x \in F^c$, there exist disjoint open sets U and V of X such that $x \in U$ and $F \subset V$.
- (ii) g-normal[6] if for any pair of disjoint g-closed sets A and B, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$.

Definition1.4: A mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

- (i) generalized minimal continuous (briefly g-m_i continuous) map if the inverse image of every minimal closed set in Y is g-minimal closed set in X.
- (ii) generalized minimal irresolute (briefly g-m_i irresolute) map if the inverse image of every g- minimal closed set in Y is a g-minimal closed set in X.

Definition 1.5: A map $f: (X, \tau) \to (Y, \sigma)$ is said to be generalized minimal^{*} closed (briefly g- m_i^* closed) map if the image of every g-minimal closed set in X is a g-minimal closed set in Y.

2. GENERALIZED MINIMAL REGULAR SPACES

Definition 2.1: A topological space (X, τ) is said to be generalized minimal regular (briefly g-m_i regular) space if for every g-m_i closed set F of X and each point $x \in F^c$ there exists disjoint open sets U and V of X such that $x \in U$ and $F \subset V$.

Theorem 2.2: Every g-regular space is a g-m_i regular space.

Proof: Let X be a g-regular space and F be a g-m_i closed set in X such that for every $x \in X$, $x \in F^c$. Since every g-m_i closed set is a g-closed set in X, F is a g-closed set in X. But X is g-regular space. Therefore for each g-closed set F in X and each point $x \in F^c$, there exists disjoint open sets U and V in X such that $x \in U$ and $F \subset V$. Thus for every g-m_i closed set F in X and each point $x \in F^c$, there exist disjoint open sets U and V in X such that $x \in U$ and $F \subset V$. Hence X is a g-m_i regular space.

Remark 2.3: Converse of the Theorem 1.2.2 need not be true.

Example 2.4: Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$. Open sets: ϕ , $\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X$. Closed sets: ϕ , $\{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X$. g-closed sets: ϕ , $\{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X$.

Here (X, τ) is a g-m_i regular space but not a g-regular space. Since for a g-closed set $F = \{d\}, F^c = \{a, b, c\}$ so that for $b \in F^c = \{a, b, c\}$, there do not exist disjoint open sets U and V such that $b \in U$ and $F \subset V$.

Theorem 2.5: In a topological space (X, τ) , the following statements are equivalent.

- (i) (X, τ) is a g-m_i regular space.
- (ii) For each $x \in X$ and for each $g m_a$ open set U containing x, there exists an open set V such that $x \in V \subset cl(V) \subset U$.
- (iii) For each $x \in X$ and for each $g-m_i$ closed set F, such that $x \in F^c$ there exists an open set V such that $x \in V$ and $cl(V) \cap F = \phi$.

Proof:

(i) \Rightarrow (ii): Let (X, τ) be a g-m_i regular space and $x \in X$. Let U be any g-m_a open set containing x. Then U^c is a g-m_i closed set such that $x \notin U^c$. Since X is a g-m_i regular space, there exist disjoint open sets V and W of X such that $x \in V$ and U^c \subset W.

Now $V \cap W = \phi$ implies $V \subset W^c$ which implies $cl(V) \subset cl(W^c) = W^c$ which implies that $cl(V) \subset W^c$ (a),

since W^c is a closed set. Again since $U^c \subset W$, $W^c \subset U$(b).

Therefore from (a) and (b), $x \in V \subset cl (V) \subset W^c \subset U$. Thus $x \in V \subset cl (V) \subset U$.

(ii) \Rightarrow (iii): For each $x \in X$ let F be any g-m_i closed set in X such that $x \in F^c$. Then F^c is a g-m_a open set containing x. By (ii) there exists an open set V such that $x \in V \subset cl$ (V) $\subset F^c$, which implies $x \notin F$. Therefore cl (V) $\cap F = \phi$.

(iii) \Rightarrow (i): Let $x \in X$ and let F be any g-m_i closed set in X such that $x \in F^c$. By (iii) there exists an open set V such that $x \in V$ and cl (V) \cap F = ϕ . Since cl (V) is a closed set, [cl (V)]^c is an open set. Now cl (V) \cap F = ϕ implies that F \subset [cl (V)]^c. Hence for every g-m_i closed set F in X and for each point $x \in F^c$, there exist disjoint open sets V and [cl (V)]^c such that $x \in V$ and F \subset [cl (V)]^c. Thus (X, τ) is a g-m_i regular space.

Suwarnlatha N. Banasode /

On Generalized Minimal Regular Spaces and Generalized Minimal Normal Spaces / IRJPA- 4(12), Dec.-2014.

Theorem 2.6: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is a bijection, g-m_i irresolute, open map and X is a g-m_i regular space, then Y is a g-m_i regular space.

Proof: Let F be any g-m_i closed set in Y and $y \in F^c$. Since *f* is a bijective g-m_i irresolute map, there exists $x \in X$ such that $x = f^{-1}(y)$ which implies f(x) = y and $f^{-1}(F)$ is a g-m_i closed set in X. Also $x \in [f^{-1}(F)]^c$. Since X is a g-m_i regular space, by definition for each g-m_i closed set $f^{-1}(F)$ in X such that $x \in [f^{-1}(F)]^c$, there exists disjoint open sets U and V in X such that $x \in U$ and $f^{-1}(F) \subset V$. But *f* is a bijective open map. Therefore f(U) and f(V) are open sets in Y and $f(U) \cap f(V) = \phi$. Since $U \cap V = \phi$, $f(U \cap V) = \phi$ which implies that $f(U) \cap f(V) = \phi$. Now $x \in U$ implies $f(x) \in f(U)$ which implies that $y \in f(U)$ and $f^{-1}(F) \subset V$ implies $F \subset f(V)$. Therefore for each g-m_i closed set F of Y and for each $y \in F^c$, there exist disjoint open sets f(U) and f(V) in Y such that $y \in f(U)$ and $F \subset f(V)$. Thus Y is a g-m_i regular space.

Theorem 2.7: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is a continuous, $g - m_i^*$ closed, injection and Y is a $g - m_i$ regular space, and then X is a $g - m_i$ regular space.

Proof: Let F be any g-m_i closed set of X and $x \in F^c$. Since f is a continuous g-m_i^{*} closed map, f(F) is a g-m_i closed set in Y and $f(x) \in [f(F)]^c$. Also since Y is a g-m_i regular space, there exist disjoint open sets U and V such that $f(x) \in U$ and $f(F) \subset V$ which implies that $x \in f^{-1}(U)$ and $F \subset f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \phi$. Therefore X is a g-m_i regular space.

3. GENERALIZED MINIMAL NORMAL SPACES

Definition 3.1: A topological space (X, τ) is said to be generalized minimal normal (briefly g-m_i normal) space if for any pair of disjoint g-m_i closed sets A and B, there exist disjoint open sets U and V such that A \subset U and B \subset V.

Theorem 3.2: Every g-normal space is a g-m_i normal space.

Proof: Let (X, τ) be any g-normal space and let A and B be any pair of disjoint g-m_i closed sets in X. Since every g-m_i closed set is a g-closed set, A and B are g-closed set in X. By hypothesis, for any pair of disjoint g-closed sets A and B there exists disjoint open sets U and V such that A \subset U and B \subset V. Therefore for any pair of disjoint g-m_i closed sets A and B, there exists disjoint open sets U and V such that A \subset U and B \subset V. Hence (X, τ) is g-m_i normal space.

Remark 3.3: Converse of the Theorem 1.3.2 need not be true.

Example 3.4: Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{b\}, \{c\}, \{a, d\}, \{b, c\}, \{a, b, d\}, \{a, c, d\}, X\}$.

Open sets: ϕ , {b}, {c}, {a, d}, {b, c}, {a, b, d}, {a, c, d}, X...

Closed sets: ϕ , {b}, {c}, {a, d}, {b, c}, {a, b, d}, {a, c, d}, X.

g-closed sets: ϕ , {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X... Here (X, τ) is a g-m_i normal space but not a g-normal space. Since

For disjoint g-closed sets $\{a\}$ and $\{d\}$ there do not exist disjoint open sets U and V such that $\{a\} \subset U$ and $\{d\} \subset V$.

Theorem 3.5: In a topological space (X, τ) , the following statements are equivalent.

- (i) (X, τ) is a g-m_i normal space.
- (ii) For each g-m_i closed set A and each g-m_a open set U such that $A \subset U$, there exists an open set V such that $A \subset V \subset cl(V) \subset U$.
- (iii) For every pair of disjoint g-m_i closed sets A and B of X, there exists an open set V such that $A \subset V$ and $cl(V) \cap B = \phi$.

Proof:

(i) \Rightarrow (ii): Let (X, τ) be any g-m_i normal space. Let A be a g-m_i closed set A and U be g-m_a open set such that $A \subset U$. Then U^c is a g-m_i closed set in X. Now A and U^c are disjoint g-m_i closed sets. By (i), there exist disjoint open sets V and W such that $A \subset V$ and $U^c \subset W$. Now $V \cap W = \Phi$ implies $V \subset W^c$ which implies $cl(V) \subset cl(W^c) = W^c$ which implies $cl(V) \subset cl(W^c) = W^c$ which implies $cl(V) \subset U$.

(ii) \Rightarrow (iii): Let A and B be any pair of disjoint g-m_i closed sets so that $A \cap B = \phi$ then $A \subset B^c$. Since A is a g-m_i closed set and B^c is a g-m_a open set such that $A \subset B^c$, by (ii) there exists an open set V such that $A \subset V \subset cl (V) \subset B^c$ which implies cl $(V) \cap B = \phi$.

(iii) \Rightarrow (i): Let A and B be any pair of disjoint g-m_i closed sets in X.

By (iii), there exists an open set V such that $A \subset V$ and $cl(V) \cap B = \phi$ which implies $A \subset V$ and $B \subset [cl(V)]^c$. Therefore for any pair of disjoint g-m_i closed sets in X, there exists disjoint open sets V and $[cl(V)]^c$ such that $A \subset V$ and $B \subset [cl(V)]^c$. Therefore (X, τ) is a g-m_i normal space.

Suwarnlatha N. Banasode /

On Generalized Minimal Regular Spaces and Generalized Minimal Normal Spaces / IRJPA- 4(12), Dec.-2014.

Theorem 3.6: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is bijection, g-m_i irresolute, open map and X is a g-m_i normal space, then Y is a g-m_i normal space.

Proof: Let A and B be any pair of disjoint g-m_i closed sets in Y. Since *f* is a g-m_i irresolute map, $f^{-|}(A)$ and $f^{-|}(B)$ are g-m_i closed sets in X and hence $f^{-|}(A) \cap f^{-|}(B) = f^{-|}(A \cap B) = \phi$. But X is a g-m_i normal space, so there exists disjoint open sets U and V such that $f^{-|}(A) \subset U$ and $f^{-|}(B) \subset V$. Since *f* is open, bijective map, $A \subset f(U)$, $B \subset f(V)$ and $f(U) \cap f(V) = \phi$. Also *f* (U) and *f* (V) are open in Y. This shows that Y is a g-m_i normal space.

Theorem 3.7: If $f: (X, \tau) \to (Y, \sigma)$ is continuous, $g-m_i^*$ closed, injection and Y is a $g-m_i$ normal space, and then X is a $g-m_i$ normal space.

Proof: Let A and B be any pair of disjoint g-m_i closed sets in X. Since f is a g-m_i^{*} closed map, f(A) and f(B) are g-m_i closed sets in Y and $f(A) \cap f(B) = \phi$. But Y is a g-m_i normal space. So there exist disjoint open sets U and V such that $f(A) \subset U$ and $f(B) \subset V$. Thus we obtain $A \subset f^{-1}(U)$ and $B \subset f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \phi$. Since f is a continuous map, $f^{-1}(U)$ and $f^{-1}(V)$ are open sets in X. This shows that X is a g-m_i normal space.

REFERENCES

- 1. K. Balachandran, P. Sundram and H. Maki, On generalized continuous maps in topological spaces. *Mem. Fac. Sci. Kochi Univ. (Math.)12 (1991), 5-13.*
- 2. N. Levine, Generalized closed sets in topology. *Rendiconti del Circolo Matematico di Palermo, Vol. 19(1970),* 89-96.
- 3. M. Caldas, On g-closed sets and g-continuous mappings. *Kyungpook Math. J. Volume 33, No 2, December 1993, 205-209.*
- 4. W. Dunham and N. Levine, Further results on generalized closed sets in topology. *Kyungpook Math. J. Volume* 20, No 2, December 1980.169-175.
- 5. S. R. Malghan, Generalized closed maps, J.Karnatak Univ. Sci. 27(1982), 82-89.
- 6. B. M. Munshi, Separation axioms. Acta Ciencia Indica, 12 (1986), 140-144.
- 7. F. Nakaoka and N. Oda, Some Applications of Minimal Open Sets, *Int .J. Math. Math. Sci. Vol. 27, No. 8, (2001)* 471-476.
- 8. F. Nakaoka and N. Oda, Some Properties of Maximal open Sets, Int .J. Math. Math. Sci. Vol. 21, (2003) 1331-1340.
- 9. T. Noiri and V. Popa, On g-regular spaces and some functions, *Mem. Fac. Sci. Kochi Univ. (Math)* 20 (1999), 67 74.

Source of Support: Nil, Conflict of interest: None Declared

[Copy right © 2014 This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]