INEQUALITIES CONCERNING THE INTEGRAL MEAN ESTIMATES FOR POLYNOMIALS

B. A. Zargar*
Department of Mathematics, University of Kashmir, Srinagar, 190006, India E-mail: bazargar@gmail.com

(Received on: 12-10-11; Accepted on: 07-11-11)

Abstract

Let $P(z)$ be a polynomial of degree n and $P^{\prime}(z)$ its derivative. In this paper we shall obtain an interesting generalization of De-Bruijn's Theorem and obtain as a special case the inequality due to Malik that if $P(z) \neq 0$ for $|z|<k, k \geq 1$, then $\underset{|z|=1}{\operatorname{Max}}\left|P^{\prime}(z)\right| \leq \frac{n}{1+k} \underset{|z|=1}{\operatorname{Max}}|P(z)|$ and its generalization due to Govil.

Keywords and Phrases: Erdos-Lax Theorem, Maximum Modulus Principle, Zeros of a polynomial.
Mathematics Subject Classification: (2000) 30A12, 30D15

INTRODUCTION AND STATEMENT OF RESULTS:

Let $\mathrm{P}(\mathrm{z})$ be a polynomial of degree n and $\mathrm{P}^{\prime}(\mathrm{z})$ its derivative, then

$$
\begin{align*}
& \operatorname{Max}\left|P^{\prime}(z)\right| \leq n \underset{|z|=1}{\operatorname{Max}}|P(z)| \quad \text { and for } \mathrm{q} \geq 1, \tag{1}\\
& \left\{\int_{0}^{2 \pi}\left|\mathrm{P}^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{\mathrm{q}} \mathrm{~d} \theta\right\}^{1 / \mathrm{q}} \leq \mathrm{n}\left\{\int_{0}^{2 \pi}\left|\mathrm{P}(\mathrm{e})^{\mathrm{i} \theta}\right|^{\mathrm{q}} \mathrm{~d} \theta\right\}^{1 / \mathrm{q}} . \tag{2}
\end{align*}
$$

Inequality (1) is an immediate consequence of S. Bernstein's Theorem on the derivative of a trigonometric polynomial (for reference see [9], [10] and [11]). Inequality (2) is due to Zygmund [12] who proved it for all trigonometric polynomials of degree n and not only for those which are of the form $\mathrm{P}\left(\mathrm{e}^{\mathrm{i}}\right)$.Inequality (1) can be obtained by letting $\mathrm{q} \rightarrow \infty$ in the inequality (2). Both the inequalities (1) and (2) can be sharpened if we restrict ourselves to the class of polynomials having no zero in $\mathrm{zz} \mid<1$. In this connection it was conjectured by P. Erdos and later verified by Lax [7] (for other proof see [2]) that if $\mathrm{P}(\mathrm{z})$ does not vanish in $|\mathrm{z}|<1$, then inequality (1) can be replaced by ${ }^{1}$

Theorem 1.1: If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having no zero in $|z|<1$, then

$$
\begin{equation*}
\underset{|z|=1}{\operatorname{Max}}\left|\mathrm{P}^{\prime}(\mathrm{z})\right| \leq \frac{\mathrm{n}}{2} \operatorname{Max}_{|\mathrm{z}|=1}|\mathrm{P}(\mathrm{z})| \tag{3}
\end{equation*}
$$

Equality in (3) holds if all zeros of $\mathrm{P}(\mathrm{z})$ lie in $\mathrm{zz}=1$. This result was extended by Malik [8] who proved.

Theorem 1.2: If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n which has no zero in the disk $|z|<k, k \geq 1$,

$$
\begin{equation*}
\underset{|z|=1}{\operatorname{Max}}\left|P^{\prime}(z)\right| \leq \frac{n}{1+k} \underset{|z|=1}{\operatorname{Max}}|P(z)| \tag{4}
\end{equation*}
$$

Corresponding author: B. A. Zargar,*E-mail: bazargar@gmail.com

The result is best possible and equality holds for $\mathrm{P}(\mathrm{z})=(\mathrm{z}+\mathrm{k})^{\mathrm{n}}$.
As a refinement of Theorem 1.1 Aziz and Dawood [1] have shown that
Theorem 1.3: If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n which does not vanish in the disk $|z|<1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(\mathrm{z})\right| \leq \frac{\mathrm{n}}{2}\{\underset{|\mathrm{z}|=1}{\operatorname{Max}}|\mathrm{P}(\mathrm{z})|-\underset{|\mathrm{z}|=1}{\operatorname{Min}}|\mathrm{P}(\mathrm{z})|\} \tag{5}
\end{equation*}
$$

The result is best possible and equality in (5) holds for the polynomial $P(z)=\alpha z^{n}+\beta$, where $|\beta| \geq|\alpha|$.
Theorem 1.3 was generalized by Govil [6] who proved the following result:
Theorem 1.4: If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having no zeros in $|z|=1, k \geq 1$, then

$$
\begin{equation*}
\operatorname{Max}_{|\mathrm{z}|=\mathrm{k}}\left|\mathrm{P}^{\prime}(\mathrm{z})\right| \leq \frac{\mathrm{n}}{1+\mathrm{k}} \operatorname{Max}_{|\mathrm{z}|=1}|\mathrm{P}(\mathrm{z})|-\frac{\mathrm{n}}{1+\mathrm{k}} \operatorname{Min}_{|\mathrm{z}|=\mathrm{k}}|\mathrm{P}(\mathrm{z})| \tag{6}
\end{equation*}
$$

De-Bruijn [5] found out the following refinement of inequality (2).
Theorem 1.5: If $\mathrm{P}(\mathrm{z})$ is a polynomial of degree n which has no zeros in the disk $|\mathrm{z}|<1$, then for $\mathrm{p} \geq 1$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p} \leq n C_{p}\left\{\int_{0}^{2 \pi}\left|P(e)^{i \theta}\right|^{p} d \theta\right\}^{1 / p} \tag{7}
\end{equation*}
$$

where

$$
C_{p}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+e^{i \alpha}\right|^{p} \mathrm{~d} \alpha\right\}^{-1 / \mathrm{p}}
$$

The result is best possible and equality in (7) holds for $\mathrm{P}(\mathrm{z})=\alpha \mathrm{z}^{\mathrm{n}}+\beta$, where $|\beta| \geq|\alpha|$.
The case $\mathrm{p}=2$ was obtained by Lax [7], where as, if we let $\mathrm{p} \rightarrow \infty$ in (7) we get Erdos - Lax Theorem (Theorem 1.1).
In this paper we shall present the following result which is an interesting generalization of Theorem 1.5 and includes as a special case Theorem 1.2 due to Malik [8] and its generalization due to Govil [6].
Theorem 1.6: If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n which does not vanish in $|z|<k$, where $k \geq 1$ and $m=\operatorname{Min}_{|z|=\mathrm{k}}|\mathrm{p}(\mathrm{z})|$, then for every real or complex number β with $|\beta| \leq 1$, and for every $\mathrm{p}>0$, we have

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)+\frac{m n \beta}{1+k}\right|^{p} d \theta\right\}^{\frac{1}{p}} \leq n C_{p}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{\frac{1}{p}} \tag{8}
\end{equation*}
$$

where

$$
\mathrm{Cp}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|k+e^{i \alpha}\right|^{p} d \alpha\right\}^{\frac{-1}{p}}
$$

Remark: Letting $\mathrm{p} \rightarrow \infty$ in (8) and choosing argument of β with $|\beta|=1$ suitably, it follows that

$$
\underset{|z|=1}{\operatorname{Max}}\left|\mathrm{p}^{\prime}(\mathrm{z})\right|+\frac{\mathrm{mn}}{1+\mathrm{k}} \leq \frac{\mathrm{n}}{1+\mathrm{k}} \operatorname{Max}_{|\mathrm{z}|=1}|\mathrm{p}(\mathrm{z})|
$$

If we take $\mathrm{k}=1$ in Theorem 1.6, we get the following interesting refinement of De Bruijn's Theorem (Theorem 1.5) for $\mathrm{p}>0$

Corollary: If $\mathrm{P}(\mathrm{z})$ is a polynomial of degree n which does not vanish in $|\mathrm{z}|<1$ and $\mathrm{m}=\underset{|Z|=1}{\operatorname{Min}}|P(z)|$, then for every real or complex β with $|\beta| \leq 1$ and for every $\mathrm{p}>0$, we have

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)+\frac{m n \beta}{2}\right|^{p} d \theta\right\}^{\frac{1}{p}} \leq n C_{p}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{\frac{1}{p}} \tag{9}
\end{equation*}
$$

where.

$$
C_{p}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+e^{\mathrm{i} \alpha}\right|^{\mathrm{p}} \mathrm{~d} \alpha\right\}^{\frac{-1}{\mathrm{p}}}
$$

LEMMAS:

For the proof of Theorem 1.6, we need the following Lemmas.
Lemma: 2.1. If $\mathrm{P}(\mathrm{z})=\mathrm{a}_{0}+\sum_{\mathrm{j}=\mathrm{m}}^{\mathrm{n}} \mathrm{a}_{\mathrm{j}} \mathrm{z}^{\mathrm{j}}$ has no zeros in $|z| \leq k, \mathrm{k} \geq 1$, then

$$
k^{m}\left|P^{\prime}(z)\right| \leq\left|Q^{\prime}(z)\right| \quad \text { for } \quad|\mathrm{z}|=1
$$

and

$$
\begin{equation*}
\underset{|z|=1}{\operatorname{Max}}\left|P^{\prime}(z)\right| \leq \frac{n}{1+k^{m}} \operatorname{Max}_{|z|=1}|P(z)| \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{Q}(\mathrm{z})=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)} \tag{11}
\end{equation*}
$$

which is due to Chan and Malik [4].
Lemma: 2.2. If $P(z)$ is a polynomial of degree n, then for every real α and for every $p>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|n P\left(e^{i \theta}\right)-\left(1-e^{i \theta}\right) e^{i \alpha} P^{\prime}\left(e^{i \theta}\right)\right|^{p} d \theta \leq n^{p} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta \tag{12}
\end{equation*}
$$

Lemma 2.2 is due to Melas ([9] Inequality 5).
The following Lemma which is of independent interest is also needed for the proof of Theorem 1.6.
Lemma: 2.3. If A, B and C are non-negative real numbers such that $\mathrm{B}+\mathrm{C} \leq \mathrm{A}$ then for every real $\alpha, 0 \leq \alpha<2 \pi$, we have

$$
\begin{equation*}
\left|(\mathrm{A}-\mathrm{C})+(\mathrm{B}+\mathrm{C}) \mathrm{e}^{\mathrm{i} \alpha}\right| \leq\left|\mathrm{A}+\mathrm{Be} \mathrm{e}^{\mathrm{i} \alpha}\right| \tag{13}
\end{equation*}
$$

Proof of Lemma 2.3: If $\mathrm{C}=0$, then Lemma 2.3 is obvious. So we suppose $\mathrm{C}>0$. Since $\cos \alpha \leq 1$ for all real α and by hypothesis $\mathrm{A}-\mathrm{B}-\mathrm{C} \geq 0$, it follows that

$$
(\mathrm{A}-\mathrm{B}-\mathrm{C}) \cos \alpha \leq(\mathrm{A}-\mathrm{B}-\mathrm{C})
$$

Multiplying both sides of this inequality by 2 C and noting that $\mathrm{C}>0$, we get

$$
\left\{2 \mathrm{C}(\mathrm{~A}-\mathrm{B})-2 \mathrm{C}^{2}\right\} \cos \alpha \leq 2 \mathrm{C}(\mathrm{~A}-\mathrm{B}-\mathrm{C})
$$

or equivalently,

$$
2\left\{\mathrm{C}(\mathrm{~A}-\mathrm{B})-\mathrm{C}^{2}\right\} \cos \alpha+2 \mathrm{C}^{2}-2 \mathrm{C}(\mathrm{~A}-\mathrm{B}) \leq 0 .
$$

Adding $\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \alpha$ both sides and rearranging the terms, we get
$\left(\mathrm{A}^{2}-2 \mathrm{AC}+\mathrm{C}^{2}\right)+\left(\mathrm{B}^{2}-2 \mathrm{BC}+\mathrm{C}^{2}\right)+2(\mathrm{~A}-\mathrm{C})(\mathrm{B}+\mathrm{C}) \operatorname{Cos} \alpha \leq \mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \alpha$.
which implies,

$$
\left|(A-C)+e^{i \alpha}(B+C)\right|^{2} \leq\left|A+e^{i \alpha} B\right|^{2}
$$

and hence

$$
\left|(A-C)+e^{i \alpha}(B+C)\right| \leq\left|A+e^{i \alpha} B\right|, \text { for every } \alpha \text {, which is (13). This completes the proof of the Lemma 2.3. }
$$

Proof of Theorem: 1.6. By hypothesis, the polynomial $p(z)$ has all its zeros in $|z| \geq k, k \geq 1$, and $m=\operatorname{Min}_{|z|=k}|p(z)|$, therefore $\mathrm{m} \leq|\mathrm{p}(\mathrm{z})|$ for $|\mathrm{z}| \leq \mathrm{k}$. We show for any given complex number α with $|\mathrm{z}| \leq 1$, the polynomial $\mathrm{F}(\mathrm{z})=\mathrm{P}(\mathrm{z})+\alpha$ m has all its zeros in $|z| \geq k$. This is obvious if $m=0$ that is if $p(z)$ has a zero on $|z|=k$. We now suppose all the zeros of $p(z)$ lie in $|z|>k$ so that $m=\operatorname{Min}_{|z|=k}|p(z)|>0$.
Hence $\mathrm{P}(\mathrm{z})$ is analytic for $|\mathrm{z}|=\mathrm{k}$ and $\left|\frac{m}{P(z)}\right| \leq 1$ for $|\mathrm{z}| \leq \mathrm{k}$. Moreover $\frac{m}{p(z)}$ is not a constant therefore, it follows by Minimum Modulus Principle that

$$
\begin{equation*}
\mathrm{m}<|P(z)| \quad \text { for } \quad|\mathrm{z}|=\mathrm{k} . \tag{14}
\end{equation*}
$$

We assume that $\mathrm{F}(\mathrm{z})=\mathrm{P}(\mathrm{z})+\alpha \mathrm{m}$ has a zero in $|z|<k$, say $\mathrm{z}=\mathrm{z}_{0}$ with $\left|\mathrm{z}_{0}\right|<\mathrm{k}$, then

$$
\mathrm{P}\left(\mathrm{z}_{0}\right)+\alpha \mathrm{m}=\mathrm{F}\left(\mathrm{z}_{0}\right)=0 .
$$

This implies,

$$
\left|P\left(z_{0}\right)\right|=|\alpha m| \leq m,
$$

which is a contradiction to (14). Hence we conclude that in any case $\mathrm{F}(\mathrm{z})=\mathrm{P}(\mathrm{z})+\alpha \mathrm{m}$ has all its zeros in $|z| \geq k$. Applying Lemma 2.1 with $m=1$ to the polynomial $F(z)$, we get

$$
\begin{equation*}
K\left|F^{\prime}(z)\right| \leq\left|G^{\prime}(z)\right| \tag{15}
\end{equation*}
$$

where,

$$
\begin{aligned}
\mathrm{G}(\mathrm{z})=z^{n} \overline{F\left(\frac{1}{\bar{z}}\right)} & =Z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}-\bar{\alpha} z^{n} m \\
& =\mathrm{Q}(\mathrm{z})-\bar{\alpha} \mathrm{z}^{\mathrm{n}} \mathrm{~m}
\end{aligned}
$$

Using $\mathrm{F}^{\prime}(\mathrm{z})=\mathrm{P}^{\prime}(\mathrm{z})$ and $\mathrm{G}^{\prime}(\mathrm{z})=\mathrm{Q}^{\prime}(\mathrm{z})-\mathrm{n} \bar{\alpha} \mathrm{z}^{\mathrm{n}-1} \mathrm{~m}$ in (15), we have

$$
\begin{equation*}
\mathrm{K}\left|\mathrm{P}^{\prime}(\mathrm{z})\right| \leq\left|\mathrm{Q}^{\prime}(\mathrm{z})-\mathrm{n} \bar{\alpha} \mathrm{mZ}^{\mathrm{n}-1}\right| \text { for } \quad|\mathrm{z}|=1 . \tag{16}
\end{equation*}
$$

Since all the zeros of $\mathrm{G}(\mathrm{z})=\mathrm{Q}(\mathrm{z})-\bar{\alpha} \mathrm{m} \mathrm{Z}^{\mathrm{n}}$ lie in $|\mathrm{z}| \leq \frac{1}{\mathrm{k}} \leq 1$, by Gauss - Lucas Theorem, it follows that all the zeros of $\mathrm{G}^{\prime}(\mathrm{z})=\mathrm{Q}^{\prime}(\mathrm{z})-\bar{\alpha} \mathrm{nZ}^{\mathrm{n}-1} \mathrm{~m}$ also lie in $|\mathrm{z}| \leq \frac{1}{\mathrm{k}} \leq 1$ for every α with $|\alpha| \leq 1$. This implies

$$
\mathrm{Q}^{\prime}(\mathrm{z}) \geq \mathrm{mn}|\mathrm{Z}|^{\mathrm{n}-1} \text { for } \quad|\mathrm{z}| \geq \frac{1}{\mathrm{k}} .
$$

In particular,

$$
\begin{equation*}
\left|\mathrm{Q}^{\prime}(\mathrm{z})\right| \geq \mathrm{mn} \quad \text { for } \quad|\mathrm{z}|=1 \tag{17}
\end{equation*}
$$

Choosing argument of α with $|\alpha|=1$ in the R.H.S of (16) such that

$$
\left|\mathrm{Q}^{\prime}(\mathrm{z})-\mathrm{n} \bar{\alpha} \mathrm{mz}^{\mathrm{n}-1}\right|=\left|\mathrm{Q}^{\prime}(\mathrm{z})\right|-\mathrm{nm} \quad \text { for } \quad|\mathrm{z}|=1
$$

which is possible by (17), therefore

$$
\begin{align*}
& \mathrm{k}\left|\mathrm{p}^{\prime}(\mathrm{z})\right| \leq\left|\mathrm{Q}^{\prime}(\mathrm{z})\right|+\mathrm{mn} \quad \text { for } \quad|\mathrm{z}|=1 \\
& \mathrm{k}\left\{\left|\mathrm{p}^{\prime}(\mathrm{z})\right|+\frac{\mathrm{mn}}{1+\mathrm{k}}\right\} \leq\left|\mathrm{Q}^{\prime}(\mathrm{z})\right|-\frac{\mathrm{mn}}{1+\mathrm{k}} \quad \text { for }|\mathrm{z}|=1 \tag{18}
\end{align*}
$$

Since it can be easily verified that

$$
\left|n p(z)-z p^{\prime}(z)\right|=\left|Q^{\prime}(z)\right| \quad \text { for } \quad|z|=1
$$

it follows from (18) that for each $\theta, 0 \leq \theta \leq 2 \pi$, we have

$$
\begin{equation*}
\mathrm{k}\left\{\left|\mathrm{p}^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|+\frac{\mathrm{mn}}{1+\mathrm{k}}\right\} \leq\left|\mathrm{np}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\mathrm{e}^{\mathrm{i} \theta} \mathrm{p}^{\prime}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|-\frac{\mathrm{mn}}{1+\mathrm{k}} \tag{19}
\end{equation*}
$$

Applying Lemma 2.3, with

$$
A=\left|n p\left(e^{i \theta}\right)-e^{i \theta} p^{\prime}\left(e^{i \theta}\right)\right| ; B=\left|p^{\prime}\left(e^{i \theta}\right)\right| \text { and } C=\frac{m n}{1+k} \text { and noting that by (19), }
$$

$\mathrm{B}+\mathrm{C} \leq \mathrm{A}$, we get

$$
\left\{\left.\left(\left|n p\left(e^{i \theta}\right)-e^{i \theta} p^{\prime}\left(e^{i \theta}\right)\right|-\frac{m n}{1+k}\right)+\left(\left|p^{\prime}\left(e^{i \theta}\right)+\frac{m n}{1+k}\right| e^{i \alpha}\right) \right\rvert\,\right\} \leq\left\|n p\left(e^{i \theta}\right)-e^{i \theta} p^{\prime}\left(e^{i \theta}\right)\left|+e^{i \alpha}\right| p^{\prime}\left(e^{i \theta}\right)\right\|
$$

Hence for every $\mathrm{p}>0$, we have

$$
\begin{align*}
\int_{0}^{2 \pi} \mid\left\{\left|n P\left(e^{i \theta}\right)-e^{i \theta} P^{\prime}\left(e^{i \theta}\right)\right|\right. & \left.-\frac{m n}{1+k}\right\}+\left.\left\{\left|P^{\prime}\left(e^{i \theta}\right)\right|+\frac{m n}{1+k}\right\}\left(e^{i \alpha}\right)\right|^{p} d \alpha \leq \int_{0}^{2 \pi}| | n P\left(e^{i \theta}\right)-e^{i \theta} P^{\prime}\left(e^{i \theta}\right)\left|+e^{i \alpha}\right| P^{\prime}\left(e^{i \theta}\right) \| d \alpha \\
& =\int_{0}^{p}\left\|n P\left(e^{i \theta}\right)-e^{i \theta} P^{\prime}\left(e^{i \theta}\right)\left|+e^{i \alpha}\right| e^{i \theta} P^{\prime}\left(e^{i \theta}\right)\right\| d \alpha \\
& \int_{0}^{2 \pi}\left|n P\left(e^{i \theta}\right)-e^{i \theta} P^{\prime}\left(e^{i \theta}\right)+e^{i \alpha} e^{i \theta} P^{\prime}\left(e^{i \theta}\right)\right| d \alpha \tag{20}
\end{align*}
$$

Integrating both sides of (20) w. r. t θ from 0 to 2π and using Lemma 2.2, we get

$$
\begin{align*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi} \mid\left\{\left|n P\left(e^{i \theta}\right)-e^{i \theta} P^{\prime}\left(e^{i \theta}\right)\right|-\right. & \left.\frac{m n}{1+k}\right\}+\left.\left\{\left|P^{\prime}\left(e^{i \theta}\right)\right|+\frac{m n}{1+k}\right\} e^{i \alpha}\right|^{p} d \alpha d \theta \tag{21}\\
& \leq \int_{0}^{2 \pi}\left\{\int_{0}^{2 \pi}\left|n P\left(e^{i \theta}\right)-e^{i \theta} P^{\prime}\left(e^{i \theta}\right)+e^{i \alpha} e^{i \theta} P^{\prime}\left(e^{i \theta}\right)\right|^{p} d \theta\right\} d \alpha \\
& \leq \int_{0}^{2 \pi} n^{p} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta d \alpha=2 \pi n^{p} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta \ldots
\end{align*}
$$

But

Using this in (21), we get for each $\mathrm{p}>\mathrm{o}$,

$$
\int_{0}^{2 \pi}| | P^{\prime}\left(e^{i \theta}\right)\left|+\frac{m n}{1+k}\right|^{p} d \theta \int_{0}^{2 \pi}\left|e^{i \alpha}+k\right|^{p} d \alpha \leq 2 \pi n^{p} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta
$$

From which the desired result follows immediately and this completes the proof of the Theorem 1.6.

REFERENCES:

[1] A. Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivative Jour. Approx. Theory, 54(1988), 306313.
[2] A. Aziz and Q. G. Mohammad, Simple proof of Theorem of Erdos and Lax, Proc. Amer Math. Soc. (1980), 119-122.
[3] M. Bhidkham and K. K. Dewan, Inequalities for a polynomial and its derivative, J. Math Anal Appl. 166 (1992), 319-324.
[4] T. N. Chan and M. A. Malik, On Erdo s - Lax Theorem, Proc. Indian Acad. Sci. 92 (1983), 191-193.
[5] N.G. De Bruijn, Inequalities concerning polynomials in the complex domain Indag math. 9 (1947) $591-598$.
[6] N. K. Govil, Some inequalities for the derivative of a polynomial, Jour. Approx. theory 66 (1991).29-35
[7] P.D. Lax, Proof of a conjucture of P. Erdos on the derivative of a polynomial Bull. Amer. Math Soc. 50 (1944), 509-513.
[8] M.A. Malik, On the derivative of a polynomial, Jour. London Math. Soc. 1 (1969) 57 - 60.
[9] A.D. Melas, Problems and Solutions, No, (10255), Amer. Math. Monthly (2), 103 (1996), 177-181.
[10] G.V. Milovanovic, D. S. Mitrinovic and Th. M. Rassias, Topics in Polynomials, Extremal Problems, Inequalities, Zeros, world Scientific, Singapore, 1994.
[11] A.C. Schaeffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc 47 (1941), 565 - 579.
[12] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc (2), 34 (1932), 392 - 400.

