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ABSTRACT 

Let P (z) be a polynomial of degree n and P′(z) its derivative. In this paper we shall obtain an interesting 

generalization of De-Bruijn’s Theorem and obtain as a special case the inequality due to Malik that if P(z) ≠ 0 for 

|z| < k, k ≥1, then )(
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INTRODUCTION AND STATEMENT OF RESULTS: 

 

Let P(z) be a polynomial of degree n and P′(z) its derivative, then 
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Inequality (1) is an immediate consequence of S. Bernstein’s Theorem on the derivative of a trigonometric polynomial 

(for reference see [9], [10] and [11]). Inequality (2) is due to Zygmund [12] who proved it for all trigonometric 

polynomials of degree n and not only for those which are of the form P(ei�).Inequality (1) can be obtained by letting  

q → ∞ in the inequality (2). Both the inequalities (1) and (2) can be sharpened if we restrict ourselves to the class of 

polynomials having no zero in |z| < 1. In this connection it was conjectured by P. Erdos and later verified by Lax [7] 

(for other proof see [2]) that if P(z) does not vanish in |z| < 1, then inequality (1) can be replaced by1 

 

Theorem 1.1: If P (z) = �
=

n

0j

j

jza  is a polynomial of degree n having no zero in |z| < 1, then 
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Equality in (3) holds if all zeros of P (z) lie in |z| = 1. This result was extended by Malik [8] who proved. 

 

Theorem 1.2: If P (z) = �
=

n

0j

j

jza is a polynomial of degree n which has no zero in the disk |z| < k, k ≥ 1,                       
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The result is best possible and equality holds for P (z) = (z + k) n. 

 

As a refinement of Theorem 1.1 Aziz and Dawood [1] have shown that 

Theorem 1.3: If P (z) = �
=

n

0j

j

jza is a polynomial of degree n which does not vanish in the disk |z| < 1, then 
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The result is best possible and equality in (5) holds for the polynomial    P (z) = �zn + �, where |�| ≥ |�|. 

 

Theorem 1.3 was generalized by Govil [6] who proved the following result: 

Theorem 1.4: If P (z) = �
=

n

0j

j

jza is a polynomial of degree n having no zeros in |z| = 1, k ≥ 1, then  
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De-Bruijn [5] found out the following refinement of inequality (2). 

 

Theorem 1.5: If P (z) is a polynomial of degree n which has no zeros in the disk |z| < 1, then for p ≥ 1, 
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The result is best possible and equality in (7) holds for P (z) = �zn + �, where |�| ≥ |�|. 

 

The case p = 2 was obtained by Lax [7], where as, if we let p → � in (7) we get Erdos – Lax Theorem (Theorem 1.1). 

 

In this paper we shall present the following result which is an interesting generalization of Theorem 1.5 and includes as 

a special case Theorem 1.2 due to Malik [8] and its generalization due to Govil [6]. 

Theorem 1.6: If P (z) = �
=

n

0j

j

jza is a polynomial of degree n which does not vanish in |z| < k, where k ≥ 1 and 

m = ,)z(pMin
kz =

then for every real or complex number � with |�| ≤ 1, and for every p > 0, we have 
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Remark: Letting p → ∞ in (8) and choosing argument of β with 1=β suitably, it follows that 

( ) ( ).zpMax
k1

n

k1

mn
zpMax

1z1z == +
≤

+
+′

 
 

If we take k = 1 in Theorem 1.6, we get the following interesting refinement of De Bruijn’s Theorem (Theorem 1.5) for 

p>0 
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Corollary: If P (z) is a polynomial of degree n which does not vanish in 1z < and m = ( )
1Z

Min P z
=

, then for every 

real or complex β with |�| ≤ 1 and for every p>0, we have 
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LEMMAS: 

 

For the proof of Theorem 1.6, we need the following Lemmas. 

Lemma: 2.1.   If   P (z) = a0 + �
=

n

mj

j

jza has no zeros in ,kz ≤ k ≥ 1, then 
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which is due to Chan and Malik [4]. 

 

Lemma: 2.2. If P (z) is a polynomial of degree n, then for every real α and for every p > 0, 
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Lemma 2.2 is due to Melas ([9] Inequality 5). 

 

The following Lemma which is of independent interest is also needed for the proof of Theorem 1.6. 

 

Lemma: 2.3. If A, B and C are non-negative real numbers such that B + C ≤ A then for every real α, 0 ≤ � < 2�, we 

have 

                             
αα +≤++− ii eBAe)CB()CA(                                                                            (13) 

 

Proof of Lemma 2.3: If C = 0, then Lemma 2.3 is obvious. So we suppose C > 0. Since cos � ≤ 1 for all real � and by 

hypothesis A – B – C ≥ 0, it follows that 

 

                (A – B – C) cos α ≤ (A – B – C). 

 

Multiplying both sides of this inequality by 2C and noting that C > 0, we get 

 

                 {2C (A - B) – 2C2} cos α ≤ 2 C (A – B – C). 

or equivalently, 

                 2 {C (A - B) – C2} cos α + 2 C2 – 2 C (A - B) ≤ 0. 

 

Adding A2 + B2 + 2 AB cos α both sides and rearranging the terms, we get 

 

(A2– 2AC + C2)+(B2– 2 BC + C2) + 2(A–C)(B + C)Cos α ≤ A2 + B2 + 2AB Cos α. 

 

 



B. A. Zargar*/ INEQUALITIES CONCERNING THE INTEGRAL MEAN ESTIMATES FOR POLYNOMIALS /RJPA- 1(8), 

Nov.-2011, Page: 184- 

 © 2011, RJPA. All Rights Reserved                                                                                                                                                   187                                                                                               

which implies, 

               ( ) ( )
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and hence  

( ) ( ) ,BeACBeCA ii αα +≤++−  for every α, which is (13). This completes the proof of the Lemma 2.3. 

 

Proof of Theorem: 1.6. By hypothesis, the polynomial p(z) has all its zeros in ,kz ≥ k ≥ 1, and m = ( ),zpMin
kz =

 

therefore m ≤ ( )zp for .kz ≤ We show for any given complex number α with ,1z ≤ the polynomial F(z) = P(z) + α 

m has all its zeros in .kz ≥ This is obvious if m = 0 that is if p(z) has a zero on .kz = We now suppose all the zeros 

of p(z) lie in kz > so that m = ( ) .0zpMin
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Hence P(z)is analytic for  kz = and 
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 is not a constant therefore, it follows by 

Minimum Modulus Principle that 
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We assume that F (z) = P(z) + α m has a zero in ,kz < say z = z0 with ,kz 0 < then 

 

                P(z0) + α m = F (z0) = 0. 

This implies, 
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which is a contradiction to (14). Hence we conclude that in any case F (z) = P(z) + αm has all its zeros in 

.kz ≥ Applying Lemma 2.1 with m = 1 to the polynomial  F(z), we get 
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Using F′(z) = P′(z) and G′(z) = Q′(z) - mzn 1n−α  in (15), we have 
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Choosing argument of α with 1=α  in the R.H.S of (16) such that 
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which is possible by (17), therefore 
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Since it can be easily verified that 
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it follows from (18) that for each θ, 0≤ θ ≤ 2π, we have 
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Applying Lemma 2.3, with 
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Hence for every p > 0, we have 
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Integrating both sides of (20) w. r. t θ from 0 to2π and using Lemma 2.2, we get 
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But  
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Using this in (21), we get for each p > o, 
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From which the desired result follows immediately and this completes the proof of the Theorem 1.6. 
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