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ABSTRACT 
The structure of soft union Γ-near ring is based on the inclusion relation and union of sets and since this new concept 
brings the soft set theory, set theory and Γ-near ring theory together, it is very functional by means of improving the 
soft set theory with respect to Γ-near ring structure. Moreover, we investigate those notions with respect to soft image, 
soft pre-image and 𝛽-inclusion of soft sets. Finally, we give some applications of soft union Γ-near ring to Γ-near ring 
theory. 
 
Index terms: Soft set, gamma near- ring SU-action, ideal SU-action, soft image, soft pre-image, β-inclusion 
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SECTION-1 INTRODUCTION 
 
The notion of near ring was first introduced by Dickson and Leonard in 1905 [1].They showed that there do exist 
"fields with one distributive law" (near fields). It was Zassenhaus who was able to determine all finite near rings. Now 
a days, near fields are mighty tools in characterizing doubly transitive groups, incidence groups and Frobenius groups. 
We note that the ideals of near rings play a central role in the structure theory; however, they do not in general coincide 
with the usual ring ideals of a ring. In 1984, Satyanarayana introduced Γ-near-ring in his doctoral thesis and obtained 
some basic results [34]. For further see [35, 36]. To solve complicated problems in economics, engineering, 
environmental science and social science. Methods in classical mathematics are not always successful because of 
various types of uncertainties presented in these problems. While probability theory, fuzzy set theory [3], rough set 
theory [4, 5] and other mathematical tools are well known and often useful approaches to describing uncertainty, each 
of these theories has its inherent difficulties as pointed out in [6, 7]. In 1999, Molodtsov[6] introduced the concept of 
soft sets, which can be seen as a new mathematical tool for dealing with uncertainties. This so-called soft set theory is 
free from the difficulties affecting existing methods. Presently, works on soft set theory are progressing rapidly. Maji et 
al. [8] defined several operations on soft sets and made a theoretical study on the theory of soft sets. Since its inception, 
it has received much attention in the mean of algebraic structures such as groups [9], semi rings [10], rings [11], 
BCK/BCI-algebras [12, 13, 14], normalistic soft groups [15], BL-algebras [16], BCH-algebras [17] and near-rings [18]. 
Atagün and Sezgin [19] defined the concepts of soft sub rings and ideals of a ring, soft subfields of a field and soft sub 
modules of a module and studied their related properties with respect to soft set operations. Also union soft sub 
structures of near-rings and near-ring modules are studied in [20].Cagman et al. defined two new types of group actions 
on a soft set, called group SI-action and group SU-action [21], which are based on the inclusion relation and the 
intersection of sets and union of sets, respectively. Ali et al. [23] introduced several operations of soft sets. Sezgin and 
Atagün[24] studied on soft set operations as well. Soft set relations and functions [25] and soft mappings [26] were 
proposed and many related concepts were discussed too. Moreover, the theory of soft sets has gone through remarkably 
rapid strides with a wide-ranging applications especially in soft decision making as in the following studies: [27, 28, 
29] and some other fields such as [30, 31, 32, 33].Cagman and Enginoglu [28] redefined the operations of soft sets to 
develop the soft set theory. By using their definitions, in this paper,  
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We define a soft uni Γ-near-ring. The structure of soft uni Γ-near-ring is based on the inclusion relation and intersection 
of sets and since this new concept brings the soft set theory, set theory and Γ-near-ring theory together, it is very 
functional by means of improving the soft set theory with respect to Γ-near-ring structure. From this view, it functions 
as a bridge among soft set theory, set theory and Γ-near-ring theory. 
 
SECTION-2: PRELIMINARIES AND BASIC CONCEPTS 
 
In this section, we recall basic definitions of soft set theory that are useful for subsequent sections. For more detail see 
the papers [8, 9] 
 
Through out the paper, U refers to an initial universe, E is a set of parameters and P(U) is the power set of U. ⊂ and ⊃ 
stand for proper subset and super set, respectively. 
 
Definition 2.1[9]: For any subset A of E, a soft set λA over U is a set, defined by a function λA, representing the 
mapping λA: E → P(U). A soft set over U can also be represented by the set of ordered pairs λA = {(x, λA(x)): x ∈ E, 
λA(x) ∈ P(U)}. Note that the set of all soft sets over U will be denoted by S(U). 
 
Definition 2.2[9]: Let λ, μ ∈S(U). Then 

(i) If λ(e) = ∅ for all e ∈ E, λ is said to be a null soft set, denoted by ∅. 
(ii) If λ(e) = U for all e ∈ E, λ is said to be an absolute soft set, denoted by U. 
(iii) λ is a soft subset of μ, denoted λ ⊆ μ, if λ(e) ⊆ μ(e) for all e∈ E. 
(iv) Soft union of  λ and μ, denoted by λ ∪ μ, is a soft set over U and defined by  λ ∪ μ: E → P(U) such that         

(λ ∪ μ)(e) = λ(e) ∪ μ(e) for all e ∈ E. 
(v) λ = μ if λ ⊆ μ and λ ⊇ μ . 
(vi) Soft intersection of  λ and μ, denoted by λ ∩ μ, is a soft set over U and defined by λ ∩ μ: E → P(U) such that 

(λ ∩ μ)(e) = λ(e) ∩ μ(e) for all e ∈ E. 
(vii) Soft complement of λ is denoted by λC and defined by λC : E → P(U) such that λC(e) = ∪ λ(e)⁄  for all e ∈ E. 

 
Definition 2.3:  Let E be a parameter set, S ⊂ E and λ: S → E be an injection function. Then S∪ λ(s) is called extended 
parameter set of S and denoted by 𝜉𝑆. 
 
If S = E, then extended parameter set of S will be denoted by 𝜉. 
 
Definition 2.4: Let R be a Γ-near ring and 𝑓𝑅 be a soft set over U. Then, 𝑓𝑅 is said to be soft union Γ-near ring over U, 
if it satisfies the following conditions hold: 

(i) 𝑓𝑅(x +y) ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y). 
(ii) 𝑓𝑅(−x)  = 𝑓𝑅(x).   
(iii) 𝑓𝑅(x 𝛼 y)  ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y), for all x, y ∈ R and 𝛼 ∈Γ. 

 
Example 1: Let R = {0, 1, 2, 3} and Γ = {𝛼, 𝛽} be non-empty sets. The binary operations defined as  
 
 
 
 
 
 
 
 
Clearly, (R, +, Γ) is a Γ-near ring. 
 
Assume that R is the set of parameters and U = ��x x

x 0�  / x ∈ Z4�, 2×2 matrices with Z4 terms, in the universal set. We 
construct a soft set 𝑓𝑅 over U by  

 𝑓𝑅(0) =��1 1
1 0��, 

 𝑓𝑅(1) =��1 1
1 0� , �2 2

2 0� , �3 3
3 0� , �4 4

4 0��, 

𝑓𝑅(2) =��1 1
1 0� , �2 2

2 0� , �3 3
3 0��, 

𝑓𝑅(3) =��1 1
1 0� , �4 4

4 0��. Then, one can easily show that the soft set 𝑓𝑅 is a soft union Γ-near ring over U. 
 
 
 

+ 0      1      2      3 
0 
1 
2 
3 

0      1      2      3 
1      0      3      2 
2      3      0      1 
3      2      1      0 

𝛼 0      1      2      3 
0 
1 
2 
3 

0      0      0      0 
0      1      0      2 
0      0      0      0 
0      2      0      2 

𝛽 0      1      2      3 
0 
1 
2 
3 

0      0      0      0 
0      1      0      0 
0      0      2      0 
0      0      0      2 
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Example 2: In example-1, assume that R={0, 1, 2, 3} is again the set of parameters and U= S3, Symmetric group, is the 
universal set. We defined a soft set 𝑓𝑅 by, 

𝑓𝑅(0) = {(1 2), (2 3)} 
𝑓𝑅(1) = {(1 2), (1 3), (1 2 3)} 
𝑓𝑅(2) = {(1 2), (2 3), (1 2 3)} 
𝑓𝑅(3) = {(1 2), (1 3), (1 2 3)} 

𝑓𝑅 is not a soft union Γ-near ring, because 
𝑓𝑅(1+1)  = 𝑓𝑅(0) = {(1 2), (2 3)} ⊈ { (1 2), (1 3), (1 2 3)}. 

 
Note-1: If 𝑓𝑅 is a soft union Γ-near ring over U, then 𝑓𝑅(0)⊆𝑓𝑅(y), for all y ∈ R 
 
SECTION-3: SOME IMPORTANT THEOREMS 
 
Theorem 3.1: Let R be a Γ-near ring and 𝑓𝑅 a soft set over U. Then, 𝑓𝑅 is a soft union Γ-near ring if and only if 
𝑓𝑅(x − y) ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y) and 𝑓𝑅(x 𝛼 y) ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y), for all x, y ∈ R and 𝛼 ∈Γ. 
 
Proof: Assume that 𝑓𝑅 is a soft union Γ-near ring over U. Then, by definition of a soft union Γ-near ring, we have 

𝑓𝑅(x − y) ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(−y) = 𝑓𝑅(x) ∪ 𝑓𝑅(y) and 
𝑓𝑅(x 𝛼 y)  ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y), for all x, y ∈ R and 𝛼 ∈Γ. 

 
Conversely, assume that 𝑓𝑅(x − y) ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y) and 𝑓𝑅(x 𝛼 y) ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y), for all x, y ∈ R and 𝛼 ∈Γ. If we 
choose x = 0, then 𝑓𝑅(0 − y)= 𝑓𝑅(−y) ⊆ 𝑓𝑅(0) ∪ 𝑓𝑅(y) = 𝑓𝑅(y).  
 
Now,  

𝑓𝑅(y) = 𝑓𝑅(−(−y)) ⊆ 𝑓𝑅(−y). Thus 𝑓𝑅(y) = 𝑓𝑅(−y) for all y ∈ R. Also, by assumption, we have 
𝑓𝑅(x + y) = 𝑓𝑅(x − (−y)) ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(−y) = 𝑓𝑅(x) ∪ 𝑓𝑅(y). Thus 𝑓𝑅 is a soft union Γ-near ring over U. 

 
Note-2: Let 𝑓𝑅 is a soft union Γ-near ring over U.  

(i) If 𝑓𝑅(x − y) = 0 for all x, y ∈ R, then 𝑓𝑅(x) = 𝑓𝑅(y). 
(ii) If 𝑓𝑅(x − y) = 𝑓𝑅(0) for all x, y ∈ R, then 𝑓𝑅(x) = 𝑓𝑅(y). 

It is known that if (R, +, Γ ) is a Γ-near ring, then (R, +) is a group but not necessarily abelian. That is, for any x, y ∈ R, 
x + y needs not be equal to y + x. However, we have the following. 

 
Theorem 3.2: Let 𝑓𝑅be a soft union Γ-near ring over U and x ∈ R. Then 
𝑓𝑅(x) = 𝑓𝑅(y) ⇔ 𝑓𝑅(x + y) = 𝑓𝑅(y + x). for all y∈R 
 
Proof: Straight forward. 
 
Theorem 3.3: Let R be a Γ-near field and 𝑓𝑅 a soft set over U. If 𝑓𝑅(0) ⊆ 𝑓𝑅(1𝑅) = 𝑓𝑅(x) for all 0≠ x ∈ R, then 𝑓𝑅 is a 
soft union Γ-near ring over U. 
 
Proof: Suppose that 𝑓𝑅(0) ⊆ 𝑓𝑅(1𝑅) = 𝑓𝑅(x) for all 0≠ x ∈ R. In order to prove that 𝑓𝑅 is a soft union Γ-near ring over 
U, it is enough to prove that 𝑓𝑅(x − y) ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y) and 𝑓𝑅(x 𝛼 y) ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y). 
 
Let x, y ∈ R and 𝛼 ∈Γ. Then, we have the following cases: 
 
Case-1: Suppose that x ≠ 0 and y = 0 or x = 0 and y ≠ 0. Since R is a Γ-near field, so it follows that x 𝛼 y =0 and   

𝑓𝑅(x 𝛼 y) = 𝑓𝑅(0). Since 𝑓𝑅(0) ⊆ 𝑓𝑅(x) for all x ∈ R,  
So,  𝑓𝑅(x 𝛼 y) = 𝑓𝑅(0) ⊆ 𝑓𝑅(x) and 𝑓𝑅(x 𝛼 y) = 𝑓𝑅(0) ⊆ 𝑓𝑅(y). This imply 𝑓𝑅(x 𝛼 y) ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y). 
 
Case-2: Suppose that x ≠ 0 and y≠ 0. It follows that x 𝛼 y ≠0. Then  

𝑓𝑅(x 𝛼 y) = 𝑓𝑅(1𝑅) = 𝑓𝑅(x) and 𝑓𝑅(x 𝛼 y) = 𝑓𝑅(1𝑅) = 𝑓𝑅(y). This imply  
𝑓𝑅(x 𝛼 y)  ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y). 

 
Case-3: Suppose that x = 0 and y = 0, then clearly 𝑓𝑅(x 𝛼 y) ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y). Hence 

𝑓𝑅(x 𝛼 y)  ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y) for all x, y ∈ R and 𝛼 ∈Γ. 
 
Theorem 3.4: If 𝑓𝑅 and 𝑓𝑆 are soft union Γ-near rings over U1 and U2, then 𝑓𝑅 × 𝑓𝑆 is also soft union Γ-near ring over 
U1 × U2. 
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Proof: Let (x1, y1), (x2, y2) ∈ R×S. Then 

𝒽R×S{(x1, y1) −  (x2, y2)} = 𝒽R×S(x1 − x2, y1 − y2) 
 = 𝒽R(x1 − x2) × 𝒽s(y1 − y2) 
 ⊆ (𝒽R(x1)∪ 𝒽R(x2)) × (𝒽s(y1)∪  𝒽s(y2)) 
 =  (𝒽R(x1)× 𝒽s(y1)) ∪(𝒽R(x2)× 𝒽s(y2)) 
 = 𝒽R×S (x1, y1) ∪ 𝒽R×S(x2, y2). 

            
Let (x1, y1), (x2, y2) ∈ R×S and (α1, α2) ∈ Γ1 × Γ2. Then 

𝒽R×S{(x1, y1)(α1, α2) (x2, y2)} = 𝒽R×S(x1α1x2, y1α2y2) 
= 𝒽R(x1α1x2) × 𝒽s(y1α2y2) 
⊆ (𝒽R(x1)∪ 𝒽R(x2)) × (𝒽s(y1)∪  𝒽s(y2)) 
=  (𝒽R(x1)× 𝒽s(y1)) ∪(𝒽R(x2)× 𝒽s(y2)) 
= 𝒽R×S (x1, y1) ∪ 𝒽R×S(x2, y2). 

Hence 𝑓𝑅 × 𝑓𝑆 is soft union Γ-near ring over U1 × U2. 
 
Theorem 3.5: If 𝑓𝑅 and 𝑓𝑆 are soft union Γ-near rings over U, then 𝑓𝑅 ∩ 𝑓𝑆 is also soft union Γ-near ring over U. 
 
Proof:  Now, let x, y ∈ R then   

(𝑓𝑅 ∪ 𝑓𝑆 )  (x −  y) = 𝑓𝑅(x− y) ∪ 𝑓𝑆(x− y) 
⊆ (𝑓𝑅(x) ∪ 𝑓𝑅(y)) ∪ (𝑓𝑆(x) ∪ 𝑓𝑆(y)) 
= (𝑓𝑅(x) ∪ 𝑓𝑆(y) ∪ (𝑓𝑅(x)) ∪ 𝑓𝑆(y)) 
= 𝑓𝑅∪𝑆(x) ∪  𝑓𝑅∪𝑆(y) 

 
Now, let  x, y ∈ R  and 𝛼 ∈Γ then  

(𝑓𝑅 ∪ 𝑓𝑆 )  (x 𝛼 y)  = 𝑓𝑅(x 𝛼 y) ∪ 𝑓𝑆(x 𝛼 y) 
⊆ (𝑓𝑅(x) ∪ 𝑓𝑅(y))  ∪ (𝑓𝑆(x)  ∪ 𝑓𝑆(y)) 
= (𝑓𝑅(x) ∪ 𝑓𝑆(x)) ∪ ((𝑓𝑅(y)  ∪ 𝑓𝑆(y)) 
= 𝑓𝑅∪𝑆(x) ∪ 𝑓𝑅∪𝑆(y). Hence 𝑓𝑅 ∪ 𝑓𝑆 is a soft union Γ-near ring over U. 

 
4. SOFT UNION IDEALS IN GAMMA NEAR -RINGS 
 
Definition 4.1: Let R be a Γ-near ring and 𝑓𝑅 be a soft union Γ-near ring over U. Then, 𝑓𝑅is said to be a soft union       
Γ-ideal of R over U, if the following conditions hold: 

(i) 𝑓𝑅(x +y −x) ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y). 
(ii) 𝑓𝑅(x 𝛼 y) ) ⊆ 𝑓𝑅(x).   
(iii) 𝑓𝑅(x 𝛼 (y + z) −x 𝛼 y) ⊆ 𝑓𝑅(z) , for all x, y, 𝑧 ∈ R and 𝛼 ∈Γ.  

If 𝑓𝑅 is soft union Γ-near ring over U and the conditions  (i) and (ii) hold, then 𝑓𝑅 is called a soft union right Γ-ideal of 
R over U and  if  conditions (i) and (iii) hold, then 𝑓𝑅 is called  a soft  union left Γ-ideal of R over U 
 
Example 1: Let R = {0, 1, 2, 3} and Γ = {𝛼, 𝛽} be non-empty sets. The binary operations defined as 
 
 
 
 
 
 
 
 
Clearly, (R, +, Γ) is a Γ-near ring. 
 
Assume that R is the set of parameters and 

U=𝐷3 = { (x, y): x3 = y3 = (xy)2 = e, xy = yx2} = {e, x, x2, y, yx, y2x} dihedral group, the universal set.  
 
We define a soft set 𝑓𝑅 over U by  

𝑓𝑅(0) = 𝑓𝑅(3) = 𝐷3 
𝑓𝑅(2) = 𝑓𝑅(1) = {e, x}. 

Then, clearly 𝑓𝑅is a soft union left Γ-ideal and right Γ-ideal of R over U. 
 
Theorem 4.2: Let R be a Γ-near field and 𝑓𝑅 a soft union Γ-ideal of R over U. Then, 

 𝑓𝑅(0) ⊆ 𝑓𝑅(1𝑅) = 𝑓𝑅(x) for all 0≠ x ∈ R. 
 
 

+ 0      1      2      3 
0 
1 
2 
3 

0      1      2      3 
1      0      3      2 
2      3      0      1 
3      2      1      0 

𝛼 0      1      2      3 
0 
1 
2 
3 

0      0      0      0 
1      0      1      1 
0      1      2      3 
0      0      3      2 

𝛽 0      1      2      3 
0 
1 
2 
3 

0      0      0      0 
0      1      0      1 
0      2      0      3 
0      0      0      2 
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Proof: suppose that 𝑓𝑅 is a soft union Γ-ideal of R over U, then  𝑓𝑅 is a soft  union Γ-near-ring of R over U. since    
𝑓𝑅(0) ⊆ 𝑓𝑅(x), so in particular 𝑓𝑅(0) ⊆ 𝑓𝑅(1𝑅). 
 
Now, let 0 ≠ x ∈ R. Then  

𝑓𝑅(x) = 𝑓𝑅(1𝑅 ∙ 𝑥) ⊆ 𝑓𝑅(1𝑅) = 𝑓𝑅(x∙ 𝑥−1) ⊆ 𝑓𝑅(x) 
Imply that 𝑓𝑅(x) = 𝑓𝑅(1𝑅) for all 0≠ x ∈ R. 
 
For a near –ring R, the zero-symmetric part of R denoted by 𝑅0 is defined by 𝑅0={𝑟 ∈ R/ 𝑟0 = 0}. 
 
It is a zero-symmetric near-ring and 𝐼𝑖∇R, then RI ⊇ R. Hence, we have an analog for this case.  
 
Theorem 4.3: Let R=𝑅0 and 𝑓𝑅 𝑏𝑒 a soft set of R over U. Then 𝑓𝑅(x 𝛼 (y + z) −x 𝛼 y) ⊆ 𝑓𝑅(z) implies that 
 𝑓𝑅(𝑥𝑧) ⊆  𝑓𝑅(z)  for all x, y, 𝑧 ∈ R .  
 
Theorem 4.4: If 𝑓𝑅and 𝑓𝑆 are soft union Γ-ideals over U, then 𝑓𝑅 𝑓𝑆 is also soft union Γ-ideal over U. 
 
Proof: Let  𝑓𝑅 and 𝑓𝑆 are soft union Γ-ideals over U. Let (x1, y1), (x2, y2), (x3, y3) ∈ R×S and (𝜎1, 𝜎2) ∈ Γ1 × Γ2. Then 
(𝑓𝑅 𝑓𝑆)�(x1, y1) + (x2, y2) − (x1, y1)� = (𝑓𝑅 𝑓𝑆)�x1 + x2 − x1, y1+y2 – y1� 

  = 𝑓𝑅(x1 + x2 − x1) ∪ 𝑓𝑆  (y1+y2 – y1) 
 ⊆ 𝑓𝑅(x2) ∪ 𝑓𝑆  (y2 )= 𝑓𝑅 𝑓𝑆(x2, y2) 

 
(𝑓𝑅 𝑓𝑆)�(x1, y1)(x2, y2)� = (𝑓𝑅  𝑓𝑆) (x1x2, y1y2) 

= 𝑓𝑅(x1x2) 𝑓𝑆  (y1y2) 
⊆ 𝑓𝑅(x1) ∪  𝑓𝑆  (y1 )= (𝑓𝑅 𝑓𝑆)(x1, y1) and 

 
(𝑓𝑅 𝑓𝑆)�(x1, y1)(σ1, σ2)((x2, y2) + (x3, y3)� − (x1, y1)(σ1, σ2)(x2, y2)) 

= (𝑓𝑅 𝑓𝑆) (x1 σ1(x2 + x3) − x1 σ1x2, y1σ2(y2 + y3) − y1σ2y2) 
= 𝑓𝑅(x1σ1 (x2 + x3) − x1 σ1x2) ∪ 𝑓𝑆  (y1σ2(y2 + y3) − y1σ2y2) 
⊆𝑓𝑅(x3) ∪  𝑓𝑆  (y3 )= (𝑓𝑅  𝑓𝑆)(x3, y3) 

 
Hence, 𝑓𝑅 𝑓𝑆 is a soft union Γ-idel of R×S over U. 
 
Theorem 4.5:  If 𝑓𝑅and 𝑓𝑆 are soft union Γ-ideals over U1 and U2, then 𝑓𝑅 × 𝑓𝑆 is also soft union  Γ-ideal over U1 × U2. 
 
Proof:  similar to previous theorem.  
 
Theorem 4.6: If 𝑓𝑅is a soft union Γ-ideal of Γ near-ring R over U, then 𝑅𝑓={x∈ R: 𝑓𝑅(x) =𝑓𝑅(0)} is a Γ-ideal of  R over 
U 
 
Proof:  It is oblivious that 0 ∈ 𝑅𝑓⊆R. We need to prove that  

(i) x− y ∈ 𝑅𝑓  (ii)  n+x−n ∈ 𝑅𝑓 (iii)  xαn ∈ 𝑅𝑓 and n𝛼(i+x) − n𝛼i ∈ 𝑅𝑓  
for all x, y ∈ 𝑅𝑓, n, i∈ 𝑅 and  𝛼 ∈ Γ. 
 
If x, y ∈ 𝑅𝑓, then 𝑓𝑅(x) =𝑓𝑅(y) =𝑓𝑅(0). So by Theorem 4.2, it follows that 𝑓𝑅(0) ⊆ 𝑓𝑅(𝑥 − 𝑦), 𝑓𝑅(0) ⊆ 𝑓𝑅(𝑛 + 𝑥 − 𝑛), 
and  𝜆𝑅(0) ⊆ 𝑓𝑅( n 𝛼(𝑖 + 𝑥) − n 𝛼i)  
 
for all x, y ∈ 𝑅𝑓, n, i∈ 𝑅 and  𝛼 ∈ Γ 
 
Since 𝑓𝑅is a soft union Γ-ideal of R over U, so 

(i) 𝑓𝑅(x − y) ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y) = 𝑓𝑅(0) 
(ii) 𝑓𝑅(n + x − n) ⊆ 𝑓𝑅(x) = 𝑓𝑅(0)  
(iii) 𝑓𝑅(xα n)   ⊆   𝑓𝑅(𝑥) =  𝑓𝑅(0)  and 𝑓𝑅(nα (i + x) − nαi) ⊆  𝑓𝑅(x) = 𝑓𝑅(0) 

This implies that  (i)𝑓𝑅(x − y) = 𝑓𝑅(0),(ii)𝑓𝑅  (n + x − n)= 𝑓𝑅(0) , (iii)𝑓𝑅(xα n) = 𝑓𝑅(0) 
and 𝑓𝑅(nα (i + x) − nαi) = 𝑓𝑅(0) forall  x,y ∈ 𝑅𝑓, n ,i∈ 𝑅 and  𝛼 ∈ Γ 

Thus, 𝑅𝑓is a Γ-ideal of R over U. 
 
Theorem 4.7: Let 𝑓𝑅 be a soft set over U and 𝓑 be a subset of U such that ∅ ≠ 𝓑 ⊇ 𝑓𝑅(0).   
 
If 𝑓𝑅 is a soft union Γ-ideal of R over U, then 𝑓𝑅⊆ 𝓑={x ∈ R/  fR(x) ⊆ 𝓑}is a Γ-ideal of R over U. 
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Proof: Since 𝑓𝑅(0) ⊆ 𝓑, so 0 ∈ 𝑓𝑅⊆ 𝓑 and ∅ ≠ 𝑓𝑅⊆ 𝓑 ⊇ R. Take x, y ∈ 𝑓𝑅⊆ 𝓑, n, i ∈ R and 𝛼 ∈ Γ, which implies that             
𝑓𝑅(x) ⊆ 𝓑 and 𝑓𝑅(y) ⊆ 𝓑. Now we need to prove that  

(i) x− y ∈ 𝑓𝑅⊆ 𝓑  (ii)  n+x−n ∈ 𝑓𝑅⊆ 𝓑(iii)  xαn ∈ 𝑓𝑅⊆ 𝓑 and n𝛼(i+x) − n𝛼i ∈ 𝑓𝑅⊆ 𝓑 
             for all x, y ∈ 𝑓𝑅⊆ 𝓑, n, i∈ 𝑅 and  𝛼 ∈ Γ. Since 𝑓𝑅 is a soft union Γ-ideal of R over U, so it follows that  

(i) 𝑓𝑅(x − y) ⊆ 𝑓𝑅(x) ∪ 𝑓𝑅(y) ⊆ 𝓑∪ 𝓑 = 𝓑 
(ii) 𝑓𝑅(n + x − n) ⊆ 𝑓𝑅(x) ⊆ 𝓑 
(iii) 𝑓𝑅(xα n) ⊆ 𝑓𝑅(𝑥) ⊆  𝓑 and  
(iv) 𝑓𝑅(nα (i + x) − nαi) ⊆  𝑓𝑅(x) ⊆ 𝓑 

Thus, this completes the proof. 
 
Theorem 4.8: Let  𝑓𝑅 and 𝑓𝑆 are soft sets over U and 𝜑 be a Γ-near ring isomorphism from R to S. 

(i) If 𝑓𝑅 is a soft union Γ-ideal of R over U, then 𝜑(𝑓𝑅) is a soft union Γ-ideal of S over U. 
(ii) If 𝑓𝑆 is a soft union Γ-ideal of  S over U, then 𝜑−1(𝑓𝑆) is a soft union Γ-ideal of R over U. 

 
Proof: (i) let x1, x2 ∈ S. since 𝜑   is surjective, there exists y1, y2 ∈ R such that 𝜑(𝑦1)= x1, 𝜑(𝑦2)= x2. We have  

𝜑(𝑓𝑅)(x1 − x2) = ∪ {𝑓𝑅(y)/ y ∈ 𝑅 , 𝜑(𝑦) = x1 − x2} 
                              = ∪ {𝑓𝑅(y)/ y ∈ 𝑅 , 𝑦 =  𝜑−1( x1 − x2)} 
                            = ∪ {𝑓𝑅(y)/ y ∈ 𝑅 , 𝑦 =  𝜑−1( 𝜑(y1 − y2)) = y1 − y2} 
                           = ∪ {𝑓𝑅(y1 − y2)/ yi ∈ 𝑅 ,  𝜑(yi) = xi, i=1,2} 
                              ⊆ ∪ {𝑓𝑅(y1) ∪ 𝑓𝑅(y2)/  yi ∈ 𝑅 ,  𝜑(yi) = xi ,i=1,2} 
                           = ∪ {𝑓𝑅(y1)/  y1  ∈ 𝑅 ,𝜑(y1) = x1}∪ { 𝑓𝑅(y2) / y2  ∈ 𝑅 , 𝜑(y2) = x2} 
                                      = 𝜑(𝑓𝑅)(x1) ∪  𝜑(𝑓𝑅)(x2)  

 
Thus 𝜑(𝑓𝑅)(x1 − x2) ⊆𝜑(𝑓𝑅)(x1) ∪ 𝜑(𝑓𝑅)(x2). Similarly, we can prove that 

 𝜑(𝑓𝑅)(x1α1x2) ⊆ 𝜑(𝑓𝑅)(x1) ∪ 𝜑(𝑓𝑅)(x2).  
 
Now we prove that 

𝜑(𝑓𝑅)(x1 + x2 − x1) = ∪ {𝑓𝑅(y)/ y ∈ 𝑅 , 𝜑(𝑦) = (x1 + x2 − x1)} 
 = ∪ {𝑓𝑅(y)/ y ∈ 𝑅 , 𝑦 =  𝜑−1(x1 + x2 − x1)} 
 = ∪ {𝑓𝑅(y)/  y ∈ 𝑅 , 𝑦 =  𝜑−1�𝜑(y1 + y2 − y1)� = (y1 + y2 − y1)} 
 = ∪ {𝑓𝑅(y1 + y2 − y1)/  yi  ∈ 𝑅 , (yi) = xi, i=1, 2} 
 ⊆ ∪ {𝑓𝑅(y2)/  y2  ∈ 𝑅 , 𝜑(y2) = x2 } 
 = 𝜑(𝑓𝑅) (x2) 

     
Thus     𝜑(𝑓𝑅)(x1 + x2 − x1) ⊆ 𝜑(𝑓𝑅)(x2) . 
 
Now, let   x1, x2 ∈ S, y1, y2 ∈ R and 𝛼 ∈ Γ, then we have 

∅(𝑓𝑅)(x1α1x2) = ∪ {𝑓𝑅(y)/ y ∈ 𝑅 , 𝜑(𝑦) = x1α1x2} 
 = ∪ {𝑓𝑅(y)/ y ∈ 𝑅 , 𝑦 =  𝜑−1(x1α1x2)} 
 = ∪ {𝑓𝑅(y)/ y ∈ 𝑅 , 𝑦 =  𝜑−1�𝜑(y1𝛼y2)� = y1𝛼y2} 
 = ∪ {𝑓𝑅(y1𝛼y2)/  yi  ∈ 𝑅 , (yi) = xi, i=1,2} 
 ⊆ ∪ {𝑓𝑅(y2)/  y2  ∈ 𝑅 ,  𝜑(y2) = x2} 
 = 𝜑(𝑓𝑅) (x1) ∪ 𝜑(𝑓𝑅) (x2) 

 
Now let x1, x2,x3 ∈ S, y1, y2, y3 ∈ R and α1 ∈ Γ.  Then we have 

𝜑(𝑓𝑅)�x1α1(x2+x3) − (x1α1x2)�= ∪ {𝑓𝑅(y)/ y ∈ 𝑅 , 𝜑(𝑦) = x1α1(x2+x3) − x1α1x2} 
 = ∪ {𝑓𝑅(y)/ y ∈ 𝑅 ,  𝑦 =  𝜑−1(x1α1(x2+x3) − x1α1x2)} 
 = ∪ {𝑓𝑅(y)/ y ∈ 𝑅 ,  𝑦 =  𝜑−1(𝜑(y1𝛼(y2 + y3)−y1𝛼y2)) 
 = (y1𝛼(y2 + y3)−y1𝛼y2 
 = ∪ {𝑓𝑅(y1𝛼(y2 + y3)−y1𝛼y2);  yi ∈ 𝑅 , (yi) = xi, i=1, 2, 3} 
 ⊆ ∪ {𝑓𝑅(y3)/  y3  ∈ 𝑅 ,  𝜑(y3) = x3 } 
 = 𝜑(𝑓𝑅) (x3). 

 
Hence 𝜑(𝑓𝑅) is a soft union Γ-ideal of S over U. 
 
(ii) Let x1, x2,x3 ∈ S and α1 ∈ Γ and ℬ1 ∈ Γ1. 
Then, ( 𝜑−1(𝑓𝑆))(x1α1x2) = 𝑓𝑆(𝜑(x1α1x2)) = 𝑓𝑆(𝜑(x1)ℬ 𝜑(x2)) 

⊆𝑓𝑆(𝜑(x1)) ∪ 𝑓𝑆(𝜑(x2)) 
= (𝜑−1(𝑓𝑆))(x1) ∪ ( 𝜑−1(𝑓𝑆))(x2) 
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Similarly, (𝜑−1(𝑓𝑆))(x1−x2) ⊆ (𝜑−1(𝑓𝑆))(x1) ∪ (𝜑−1(𝑓𝑆))(x2). 
 
Also,  (𝜑−1(𝑓𝑆))(x1+x2 − x1) = 𝑓𝑆(𝜑(x1+x2 − x1)) 

  = 𝑓𝑆(𝜑(x1) + 𝜑(x2) − 𝜑(x1)) 
  ⊆ 𝑓𝑆(𝜑(x2)) = ( 𝜑−1(𝑓𝑆))(x2). 

 
Now, let x1, x2 ∈ S and α1 ∈Γ and  𝓑𝟏 ∈ Γ1. 

     (𝜑−1(𝑓𝑆))(x1α1x2) = 𝑓𝑆(𝜑(x1α1x2)) = 𝑓𝑆(𝜑(x1)𝓑𝟏𝜑(x2))⊆fS(𝜑(x1))=(𝜑−1(𝑓𝑠))(x1). 
      
Finally, Let x1, x2,x3 ∈ S and α1 ∈Γ and 𝓑𝟏 ∈ Γ1. 
 
Then, (𝜑−1(𝑓𝑆))(x1α1(x2+x3) − (x1α1x2)) = 𝑓𝑆(𝜑(x1α1(x2+x3) − (x1α1x2)) 

 = 𝑓𝑆(𝜑(x1)𝓑𝟏𝜑(x2)) + φ(x3) − 𝜑(x1)𝓑𝟏𝜑(x2)) 
 ⊆ 𝑓𝑆(𝜑(x3)) = ( 𝜑−1(𝑓𝑆))(x3). 

 
Hence  𝜑−1(𝑓𝑆) is a soft union Γ-ideal of R over U. 
 
CONCLUSION 
 
Fuzzy set theory, rough set theory and soft set theory are all mathematical tools for dealing with uncertainties. This 
paper is devoted to discussion of combination of soft set theory, set theory and Γ-near-ring. By using soft sets and 
union operation of sets, we have defined a new concept, called soft union Γ-near-ring. This new notion brings the soft 
set theory, set theory and Γ-near-ring theory together and therefore is very functional for obtaining results by means of 
Γ-near-ring structure. Based on the definition, we have introduced the concepts of soft union sub Γ-near-rings and soft 
union Γ-ideals of a Γ-near-ring with illustrative examples. We have then investigated these notions with respect to soft 
image, soft pre-image and β-inclusion of soft sets. Finally, we give some applications of soft union Γ-near-rings to Γ-
near-ring theory. 
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