Research Journal of Pure Algebra -1(1), Apr. - 2011, Page: 2-5
 $R J P A$ Available online through www.r.jpa.info

A NOTE ON WEISENER THEOREM ${ }^{1}$

Rulin Shen*
Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei, P. R. China, 445000
*E-mail: rulinshen@gmail.com

(Received on: 25-01-11; Accepted on: 23-02-11)

Abstract

Let $\pi(n)$ be the prime divisor set of n and called that n is a $\pi(n)$-number. Denote by n_{π} the greatest divisor of n whose prime divisor set is π. Let G be a finite group. Weisener Theorem states that the number $w(n)$ of elements whose orders are multiples of n is either zero, or a multiple of $|G|_{\pi(G \mid I) \vee(n)}$. In this paper we classify groups satisfied $w(n)$ is 0 or a $\pi(|G|) \backslash \pi(n)$-number.

Keywords: Weisener theorem, number of elements, finite groups.

MR (2000): 20D60, 20D06.

1. INTRODUCTION AND LEMMAS:

A fundamental result of Frobenius states that in a finite group the number of elements which satisfy the equation $x^{n}=1$, where n divides the order of the group, is divisible by n. This theorem and several generalizations were obtained by Frobenius at the turn of the 1900s. These results have stimulated a great amount of interest in counting solutions of equations in groups. Afterwards, Weisener gave a theorem about quantitative relations of numbers of elements (see Theorem 3, [6]). Let G be a finite group of order $|G|$. Let $o(g)$ denote the order of $g(\in G)$. Let $W(n)=\{x \in G$: n $\mid o(x)\}$ where a, b means a divides b and let $w(n)=|W(n)|$. Clearly, $w(1)=|G|$. Let $\pi(\mathrm{n})$ be the prime divisor set of n and called that n is a $\pi(\mathrm{n})$-number (we also assume that 1 is a π-number). Denote by n_{π} the greatest divisor of n whose prime divisor set is π. Let G be a finite group. Weisener theorem states that the number $w(n)$ of elements whose orders are multiples of n is either zero, or a multiple of $|G|_{\pi(|G|) \backslash(n)}$. In this paper we classify groups satisfied $w(n)$ is a $\pi(|G|) \wedge \pi(n)$-number. We prove

Theorem: Suppose that $w(n)$ is 0 , or a $\pi(|G|) \backslash \pi(n)$-number for all n. Then G is one of the following groups
(a) Z_{2};
(b) Frobenius groups K : Z_{2}, where Sylow subgroup of K is of order a Fermat prime or isomorphic to $Z_{3}{ }^{2}$;
(c) Frobenius groups $\mathrm{Z}_{2}{ }^{\mathrm{k}}: H$, where H is cyclic and Sylow subgroup of H is of order a Mersenne prime.
(d) Simple groups $P S L_{2}\left(2^{2}\right), P S L_{2}\left(2^{4}\right), P S L_{2}\left(2^{8}\right)$ and $P S L_{2}\left(2^{16}\right)$.

Rulin Shen*/A note on weisener theorem ${ }^{1 / R J P A}$-1(1), Apr.-2011, Page: 2-5
Next we will cite some lemmas. On the set $\pi(|G|)$ we define a graph $G K(G)$, called prime graph, whose vertices set is $\pi(|G|)$ with the following adjacency relation: vertices r and s in $\pi(|G|)$ are joined by edge if and only if $r s$ is the order of some element of G. Denote the connected components of the graph by $\left\{\pi_{\mathrm{i}}, i=1, \ldots, s:=s(G)\right\}, s(G)$ is said to the number of connected components of G and if $2 \in \pi(G)$, denote the component containing 2 by π_{1} always. The structure of the group which the number of connected components of prime graph is more than 1 is due to Gruenberg and Kegel as follows. Recall that a 2-Frobenius group G is $A B C$, where A and $A B$ are normal subgroups of $G, A B$ and $B C$ are Frobenius group with kernel A, B and complements B, C respectively.

Lemma: 1 If a finite group G has the disconnected prime graph, then one of the following statements holds:
(1) $s(G)=2$ and G is a Frobenius group or 2-Frobenius.
(2) there exists a non-abelian simple group S such that $S \leq H=G / N \leq A u t(S)$, where N is the maximal normal soluble subgroup of G. Furthermore, N and H / S are $\pi_{l}(G)$-subgroups, the prime graph $\mathrm{GK}(\mathrm{S})$ is disconnected.

In [2] and [5] the prime graph components of non-abelian simple groups are given.

Lemma: 2 If $\pi(G)=\{p, q\}$ with p, q both odd primes, and G has no element of order $p q$, then G is a Frobenius group or a 2-Frobenius group.

Lemma: 3 Let $G=A B C$ be a 2-Frobenius group as above. Suppose that $A C$ is a p-group. Then $\exp (\mathrm{AC}) \geq \mathrm{p}^{2}$.

Proof: Without loss of generality, we assume that A is elementary abelian p-group and C is of order p. We regard $B C$ acts on the vector space A. Since p does not divide $|B|$ and B acts nontrivially, A has a basis that is permuted semi-regularly by C. This means that all orbits have size $|C|$ (see Theorem 15.16, [1]. Let $x_{1}, x_{2}, \ldots, x_{\mathrm{p}}$ be one C-orbit of basis vectors. Then the subgroup of A generated by the $\left\{x_{1}, x_{2} \ldots x_{\mathrm{p}}\right\}$ is elementary of order p^{p}, and a basis is permuted transitively by C. The p-group generated by $\left\{x_{1}, x_{2} \ldots x_{\mathrm{p}}\right\}$ and C, therefore, is isomorphic to the wreath product of a cyclic group Z_{p} by itself. That wreath product has exponent p^{2}. More specifically, let c generate C. Then the element $x_{\mathrm{i}} c$ has order p^{2}.
2. Proof of Theorem: Let $\pi_{\mathrm{e}}(G)$ be the set of order of elements of G and $\pi(\mid \mathrm{GI})=\left\{p_{1}, p_{2}, \ldots, p_{\mathrm{m}}\right\}$. Denote by s_{i} the number of elements of order i. Suppose that $|\mathrm{G}|=\mathrm{p}_{1}{ }^{\mathrm{ul}} \mathrm{p}_{2}{ }^{\mathrm{u} 2} \ldots \mathrm{p}_{\mathrm{m}}{ }^{\mathrm{um}}$ and n is a maximal order in $\pi_{\mathrm{e}}(G)$. And let $|\mathrm{G}|_{\pi(\mathrm{n})}=$ $\mathrm{p}_{1}{ }^{\mathrm{u} 1} \mathrm{p}_{2}{ }^{\mathrm{u} 2} \ldots \mathrm{p}_{1}^{\mathrm{ul}}$. Since $w(n)$ is a $\left\{\mathrm{p}_{\mathrm{l}+1}, \mathrm{p}_{\mathrm{l}+2}, \ldots, \mathrm{p}_{\mathrm{m}}\right\}$-number and $\varphi(\mathrm{n}) \mid \mathrm{w}(\mathrm{n})$ with φ Euler function, we have n is a square-free number, that is a multiple of some primes. Thus every order of non-unit elements is a multiple of primes. Now if there is odd prime order p which is not maximal in $\pi_{\mathrm{e}}(G)$. Without loss of generality, we assume that $\mathrm{p}=\mathrm{p}_{1}$. Then we have the following identity formula

$$
\mathrm{p}_{2}^{\mathrm{t} 2} \ldots \mathrm{p}_{\mathrm{m}}^{\mathrm{tm}}=w(p)=\mathrm{s}_{\mathrm{p}}+w\left(p r_{1}\right)+w\left(p r_{2}\right)+\ldots+w\left(p r_{h}\right)
$$

where $\left\{r_{1}, r_{2}, \ldots, r_{h}\right\} \subseteq \pi(|G|) \backslash\left\{p_{I}\right\}$. So $\mathrm{W}\left(\mathrm{pr}_{\mathrm{i}}\right)$ has no element of order 2 p for $i=1,2, \ldots, h$. In fact, otherwise $\mathrm{w}(2 \mathrm{p})$ is odd, but $\mathrm{w}(\mathrm{p})$ and $w\left(p r_{i}\right)$ is even for $r_{i} \neq 2$ since $2|p-1| \varphi(\mathrm{p}) \mid w(p)$ and $\mathrm{w}\left(\mathrm{pr}_{\mathrm{i}}\right)$. This contradicts above equality. Therefore, odd prime p is disconnected to 2 in the prime graph of G, that is 2 is a component of $G K(G)$. By Lemma 1 we divide into three cases to discuss.

Case 1: G is a Frobenius group. Suppose that K and H are kernel and complement of G, respectively. Then H is one of square-free order since Sylow subgroup of H is a cyclic group of order prime.

If $2||H|$, then $| \mathrm{H} \mid=2$ since $s(G)=2$. In addition, since K is nilpotent, suppose that $\pi(K)=\left\{p_{1}, p_{2} \ldots p_{k}\right\}$,
then $w\left(p_{1} p_{2} \ldots p_{k}\right)=2^{\text {t }}$, i.e.,

$$
\begin{equation*}
\left(p_{1}^{\mathrm{t} 1}-1\right)\left(\mathrm{p}_{2}^{\mathrm{t} 2}-1\right) \ldots\left(\mathrm{p}_{\mathrm{k}}{ }^{\mathrm{tk}}-1\right)=2^{\mathrm{t}} . \tag{*1}
\end{equation*}
$$

Denote by r_{n} the primitive prime divisor of $q^{n}-1$ if $r_{n} \mid q^{n}-1$, but r_{n} cannot divide $q^{i}-1$ for every $i<n$. By Zsigmondy theorem [7] there exists r_{n} always except the cases $(n, q)=(6,2)$ and $(n, q)=\left(2,2^{k}-1\right)$ with nature number $k .$. If $t_{i} \geq 3$, then there primitive prime divisor of $p_{i}^{t i}-1$, and hence $(* 1)$ has no solution. If $t_{i}=2$, then $p_{i}^{2}-1=2^{t 0}$, that is $\left(p_{i}+1\right)\left(p_{i}-1\right)=2^{t 0}$, and so $p_{i}=3$. If $t_{i}=1$, then p_{i} is a Fermat prime. Therefore Sylow subgroup of K is isomorphic to $Z_{3}{ }^{2}$ or Z_{p} with p a Fermat prime.

If $2||K|$, then K is elementary abelian 2-group and H is of square-free order. Hence H is cyclic or a metacyclic group with generated relations $\left\langle a, b: a^{m}=b^{n}=1, a^{b}=a^{r}\right\rangle$, where $((r-1) m, n)=1, r^{m} \equiv 1(\bmod \mathrm{n})$ and $|H|=m n$ (see 10.1.10, [4]). If H is cyclic, then every prime divisor of $|H|$ is a Mersenne prime. If H is meta-cyclic, obviously, $(m, n)=1$ and $\langle\mathrm{a}\rangle$ is normal in H. Since for every element x of $\langle\mathrm{a}\rangle,\langle x\rangle$ is normal in H, we have every element of order prime in $\langle\mathrm{a}\rangle$ commutes with all elements of order prime in $\langle\mathrm{b}\rangle$. In fact, otherwise there exists an element $\mathrm{x}_{0} \in\langle\mathrm{a}\rangle$ and $\mathrm{y}_{0} \in\langle\mathrm{~b}\rangle$ such that $\left.\left\langle\mathrm{x}_{0}\right\rangle \quad y_{0}\right\rangle$ is a Frobenius group by Lemma 2, then K : $\left.\left\langle\mathrm{x}_{0}\right\rangle \quad \dot{y}_{0}\right\rangle$ is a 2 -Frobenius group. Now we regard as K is a $\left.\left\langle\mathrm{x}_{0}\right\rangle \quad y_{0}\right\rangle$-module. By 8.3.5 of [3] we know that $C_{K}\left(\left\langle\mathrm{y}_{0}\right\rangle\right) \neq 1$, it implies that 2 is connected to an odd prime in the prime graph of G, a contradiction. Since orders of a, b are both square-free, we have $a b=b a$, hence H is abelian, a contradiction.

Case 2: G is a 2-Frobenius group. Suppose that G is $A B C$, where A and $A B$ are normal subgroups of $G, A B$ and $B C$ are Frobenius group with kernel A, B and complements B, C respectively. Since B and C are both cyclic and B is of odd order, we have $2||A C|$. Hence $A C$ is a 2 -group since $s(G)=2$. By Lemma 3 we have $\exp (A C) \geqslant 4$, a contradiction.

Case 3: There exists a non abelian simple group S such that $S \leq H=G / N \leq A u t(S)$, where N is the maximal normal soluble subgroup of G.. \quad Since N and H / S are $\pi_{1}(\mathrm{G})$-groups, N is a 2-group. In addition, since Sylow 2-subgroup of G is an elementary abelian group, we have $G \cong \mathrm{~N}: \mathrm{S}^{*}$, where $\mathrm{S} \leq \mathrm{S}^{*} \leq$ Aut (S). Since the prime graph $G K(S)$ is disconnected and 2 is a component of $G K(S)$, by papers [2] and [5] it is easy to check that S is $\mathrm{L}_{2}\left(2^{\mathrm{f}}\right), \mathrm{L}_{3}\left(2^{\mathrm{f}}\right)$ or $\mathrm{Sz}\left(2^{2 \mathrm{~m}+1}\right)$. Since centralizers of field automorphisms of them have an element of order 2, we have $S^{*}=S$. Furthermore, the exponents of Sylow 2-subgroups of $L_{3}\left(2^{f}\right)$ and $\operatorname{Sz}\left(2^{2 m+1}\right)$ are more than 2, so S^{*} is $L_{2}\left(2^{f}\right)$.

Now suppose that T is a Frobenius subgroup of S of order $2\left(2^{\mathrm{f}}-1\right)$. Then $N: T$ is a 2 -Frobenius group. By Lemma 3, the exponent of Sylow 2-subgroup of $N: T$ is more than 2 , a contradiction. Therefore $N=1$.
Since $w\left(2^{f}-1\right)=s\left\{2^{f}-1\right\}=\varphi\left(2^{f}-1 \times 2^{f-1} \times\left(2^{f}+1\right)\right.$, we have

$$
\begin{equation*}
\pi\left(\varphi\left(2^{m}-1\right)\right) \subseteq \pi\left(2^{m}+1\right) \cup\{2\} \tag{*2}
\end{equation*}
$$

and similarly we have

$$
\begin{equation*}
\pi\left(\varphi\left(2^{\mathrm{m}}+1\right)\right) \subseteq \pi\left(2^{\mathrm{m}}-1\right) \cup\{2\} \tag{*3}
\end{equation*}
$$

Suppose that p is an odd prime divisor of f. Let r_{p} and $\mathrm{r}_{2 \mathrm{p}}$ are primitive prime divisors of $2^{\mathrm{p}}-1$ and $2^{2 \mathrm{p}}-1$, respectively. Then $\mathrm{p} \mid \mathrm{r}_{\mathrm{p}}-1$ and $2 \mathrm{p} \mid \mathrm{r}_{2 \mathrm{p}}-1$. Also since $\mathrm{r}_{\mathrm{p}}-1 \mid \varphi\left(2^{\mathrm{f}}-1\right)$ and $\mathrm{r}_{2 \mathrm{p}}-1 \mid \varphi\left(2^{\mathrm{f}}+1\right)$, we have $\mathrm{p} \mid\left(\varphi\left(2^{\mathrm{f}}-1\right), \varphi\left(2^{\mathrm{f}}+1\right)\right)$. On the other hand, by $(* 2),(* 3),\left(\varphi\left(2^{f}-1\right), \varphi\left(2^{f}+1\right)\right)$ has only prime divisor 2 since $\left(2^{f}-1,2^{f}+1\right)=1$. Thus f is a power of 2 , say, 2^{n}. Denote by F_{n} the Fermat number $2^{2 \mathrm{n}}+1$. If $1 \leq n \leq 4$, it is easy to check that $\mathrm{PSL}_{2}\left(2^{2 \mathrm{n}}\right)$ is satisfied the conditions of Theorem. If $\mathrm{n}=5$, then $17449 \mid \varphi\left(2^{32}+1\right)$, but does not divide $2^{32}-1=3 \times 5 \times 17 \times 257 \times 65537$, a contradiction. If $\mathrm{n} \geq 6$, then $2^{2 \mathrm{n}}-1=F_{0} F_{1} \ldots F_{\mathrm{n}-1}$. Thus $F_{5} \mid 2^{2 \wedge \mathrm{n}}-1$. Since $F_{5}=641 \times 6700417$, we have $3\left|\varphi\left(F_{5}\right)\right| \varphi\left(2^{2 \wedge \mathrm{n}}-1\right)$, and hence $3 \mid 2^{2 \wedge \mathrm{n}}+1$ by the $(* 2)$, a contradiction.

REFERENCES:

[1] Isaacs, I. M., Character theory of finite group, Acdemic Prees, NewYork, San Francisco, London, 1976.
[2] Kondratev A.S., Prime graph components finite simple groups, Mat. sbornik, 180, No.6(1989), 787-797.
[3] Kurzweil Hans, Stellmacher Bernd, The theory of finite groups: an introduction, Springer-Verlag New York, Inc., 2004.
[4] Robinson D.J.S, A course in the theory of groups, Springer-Verlag, New York, 1982.
[5] Williams J.S. , Prime Graph Components of Finite Groups, J.Alg., 1981, 69: 487-513.
[6] Weisne L., On the number of elements of a group, which have a power in a given conjugate set, Bull. Amer. Math. Soc. 31, (1925), 492-496.
[7] Zsigmondy K., Zur Theorie der Potenzreste, Monatsh.Math.Und Phys. 3(1892), 265-284.

[^0]
[^0]: ${ }^{1}$ Project supported by the NNSF of China (No.11026195) and the foundation of Educational Department of Hubei Province in China (No.Q20111901).

