A NOTE ON WEISENER THEOREM

Rulin Shen*

Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei, P. R. China, 445000

*E-mail: rulinshen@gmail.com

(Received on: 25-01-11; Accepted on: 23-02-11)

ABSTRACT

Let \(\pi(n) \) be the prime divisor set of \(n \) and called that \(n \) is a \(\pi(n) \)-number. Denote by \(n_\pi \) the greatest divisor of \(n \) whose prime divisor set is \(\pi \). Let \(G \) be a finite group. Weisener Theorem states that the number \(w(n) \) of elements whose orders are multiples of \(n \) is either zero, or a multiple of \(|G|^{\pi(n)}\). In this paper we classify groups satisfied \(w(n) = 0 \) or a \(\pi(|G|)\pi(n) \)-number.

Keywords: Weisener theorem, number of elements, finite groups.

1. INTRODUCTION AND LEMMAS:

A fundamental result of Frobenius states that in a finite group the number of elements which satisfy the equation \(x^n = 1 \), where \(n \) divides the order of the group, is divisible by \(n \). This theorem and several generalizations were obtained by Frobenius at the turn of the 1900s. These results have stimulated a great amount of interest in counting solutions of equations in groups. Afterwards, Weisener gave a theorem about quantitative relations of numbers of elements (see Theorem 3, [6]). Let \(G \) be a finite group of order \(|G|\). Let \(o(g) \) denote the order of \(g \) (\(\in G \)). Let \(W(n) = \{ x \in G : n \mid o(x) \} \) where \(a \mid b \) means \(a \) divides \(b \) and let \(w(n) = |W(n)| \). Clearly, \(w(1) = |G| \). Let \(\pi(n) \) be the prime divisor set of \(n \) and called that \(n \) is a \(\pi(n) \)-number (we also assume that 1 is a \(\pi \)-number). Denote by \(n_\pi \) the greatest divisor of \(n \) whose prime divisor set is \(\pi \). Let \(G \) be a finite group. Weisener theorem states that the number \(w(n) \) of elements whose orders are multiples of \(n \) is either zero, or a multiple of \(|G|^{\pi(n)} \). In this paper we classify groups satisfied \(w(n) = 0 \) or a \(\pi(|G|)\pi(n) \)-number. We prove

Theorem: Suppose that \(w(n) = 0 \), or a \(\pi(|G|)\pi(n) \)-number for all \(n \). Then \(G \) is one of the following groups

(a) \(Z_2 \);

(b) Frobenius groups \(K: Z_2 \), where Sylow subgroup of \(K \) is of order a Fermat prime or isomorphic to \(Z_2^2 \);

(c) Frobenius groups \(Z_2^k: H \), where \(H \) is cyclic and Sylow subgroup of \(H \) is of order a Mersenne prime.

(d) Simple groups \(PSL_2(2^7), PSL_2(2^8), PSL_2(2^9) \) and \(PSL_2(2^{16}) \).

Corresponding author: Rulin Shen, *E-mail: rulinshen@gmail.com
Next we will cite some lemmas. On the set \(\pi(|G|) \) we define a graph \(G_{K}(G) \), called prime graph, whose vertices set is \(\pi(|G|) \) with the following adjacency relation: vertices \(r \) and \(s \) in \(\pi(|G|) \) are joined by edge if and only if \(rs \) is the order of some element of \(G \). Denote the connected components of the graph by \(\{ \pi_{i}, i=1,\ldots,s:=s(G) \} \), \(s(G) \) is said to the number of connected components of \(G \) and if \(2 \in \pi(G) \), denote the component containing 2 by \(\pi_{1} \) always. The structure of the group which the number of connected components of prime graph is more than 1 is due to Gruenberg and Kegel as follows. Recall that a 2-Frobenius group \(G \) is \(ABC \), where \(A \) and \(AB \) are normal subgroups of \(G \), \(AB \) and \(BC \) are Frobenius group with kernel \(A \), \(B \) and complements \(B, C \) respectively.

Lemma: 1 If a finite group \(G \) has the disconnected prime graph, then one of the following statements holds:

1. \(s(G) = 2 \) and \(G \) is a Frobenius group or 2-Frobenius.
2. There exists a non-abelian simple group \(S \) such that \(S \leq H = G/N \leq Aut(S) \), where \(N \) is the maximal normal soluble subgroup of \(G \). Furthermore, \(N \) and \(H/S \) are \(\pi_{i}(G) \)-subgroups, the prime graph \(G_{K}(S) \) is disconnected.

In [2] and [5] the prime graph components of non-abelian simple groups are given.

Lemma: 2 If \(\pi(G)=\{p, q\} \) with \(p, q \) both odd primes, and \(G \) has no element of order \(pq \), then \(G \) is a Frobenius group or a 2-Frobenius group.

Lemma: 3 Let \(G=ABC \) be a 2-Frobenius group as above. Suppose that \(AC \) is a \(p \)-group. Then \(\exp(AC) \geq p^{2} \).

Proof: Without loss of generality, we assume that \(A \) is elementary abelian \(p \)-group and \(C \) is of order \(p \). We regard \(BC \) acts on the vector space \(A \). Since \(p \) does not divide \(|B| \) and \(B \) acts nontrivially, \(A \) has a basis that is permuted semi-regularly by \(C \). This means that all orbits have size \(|C| \) (see Theorem 15.16, [1]). Let \(x_{1}, x_{2},\ldots, x_{p} \) be one \(C \)-orbit of basis vectors. Then the subgroup of \(A \) generated by \(\{x_{1}, x_{2},\ldots, x_{p}\} \) is elementary of order \(p^{r} \), and a basis is permuted transitively by \(C \). The \(p \)-group generated by \(\{x_{1}, x_{2},\ldots, x_{p}\} \) and \(C \), therefore, is isomorphic to the wreath product of a cyclic group \(Z_{p} \) by itself. That wreath product has exponent \(p^{2} \). More specifically, let \(c \) generate \(C \). Then the element \(x, c \) has order \(p^{2} \).

2. **Proof of Theorem:** Let \(\pi_{i}(G) \) be the set of order of elements of \(G \) and \(\pi(|G|)=\{p_{1}, p_{2}, \ldots, p_{m}\} \). Denote by \(s_{i} \) the number of elements of order \(i \). Suppose that \(|G|=p_{1}^{m_{1}}p_{2}^{m_{2}}\ldots p_{m}^{m_{m}} \) and \(n \) is a maximal order in \(\pi_{i}(G) \). And let \(|G|_{\text{max}}=p_{1}^{m_{1}}p_{2}^{m_{2}}\ldots p_{i}^{m_{i}} \). Since \(w(n) \) is a \(\{p_{1}, p_{2}, \ldots, p_{m}\} \)-number and \(\varphi(n) \mid w(n) \) with \(\varphi \) Euler function, we have \(n \) is a square-free number, that is a multiple of some primes. Thus every order of non-unit elements is a multiple of some primes. Now if there is odd prime order \(p \) which is not maximal in \(\pi_{i}(G) \). Without loss of generality, we assume that \(p \mid p_{1} \). Then we have the following identity formula

\[
p_{1}^{r_{1}}\ldots p_{m}^{r_{m}}w(p)=w(p_{1})+w(pr_{1})+\ldots+w(pr_{n}),
\]

where \(\{r_{1}, r_{2}, \ldots, r_{n}\} \subseteq \pi(|G|)/\{p_{1}\} \). So \(W(p_{r}) \) has no element of order \(2p \) for \(i=1,2,\ldots, h \). In fact, otherwise \(w(2p) \) is odd, but \(w(p) \) and \(w(pr) \) is even for \(r\neq 2 \) since \(2 \mid p-1 \mid \varphi(p) \mid w(p) \) and \(w(pr) \). This contradicts above equality. Therefore, odd prime \(p \) is disconnected to 2 in the prime graph of \(G \), that is 2 is a component of \(G_{K}(G) \). By Lemma 1 we divide into three cases to discuss.

Case 1: \(G \) is a Frobenius group. Suppose that \(K \) and \(H \) are kernel and complement of \(G \), respectively. Then \(H \) is one of square-free order since Sylow subgroup of \(H \) is a cyclic group of order prime.

If \(2 \mid |H| \), then \(|H|=2 \) since \(s(G)=2 \). In addition, since \(K \) is nilpotent, suppose that \(\pi(K)=\{p_{1}, p_{2}, \ldots, p_{k}\} \).

© 2011, RJPA. All Rights Reserved
then \(w(p_1 p_2 \ldots p_k) = 2^i \), i.e.,

\[
(p_1^{i_1} - 1)(p_2^{i_2} - 1) \ldots (p_k^{i_k} - 1) = 2^i.
\]

(\(^*1\))

Denote by \(r_a \) the primitive prime divisor of \(q^i - 1 \) if \(r_a \mid q^i - 1 \), but \(r_a \) cannot divide \(q^i - 1 \) for every \(i < n \). By Zsigmondy theorem [7] there exists \(r_a \) always except the cases \((n, q) = (6, 2) \) and \((n, q) = (2, 2^i - 1) \) with nature number \(k \). If \(t \geq 3 \), then there primitive prime divisor of \(p^i - 1 \), and hence (\(^*1\)) has no solution. If \(t = 2 \), then \(p^2 - 1 \equiv 0 \), that is \((p+1)(p-1) \equiv 0 \), and so \(p_0 = 3 \). If \(t = 1 \), then \(p_0 \) is a Fermat prime. Therefore Sylow subgroup of \(K \) is isomorphic to \(Z_{q^i} \) or \(Z_p \) with \(p \) a Fermat prime.

If \(2 \mid |K| \), then \(K \) is elementary abelian 2-group and \(H \) is of square-free order. Hence \(H \) is cyclic or a metacyclic group with generated relations \(\langle a, b: a^n = b^m = 1, a^d = d \rangle \), where \((r-1)n \equiv 1 \), \(r^n \equiv 1 \mod n \) and \(|H| = mn \) (see 10.1.10, [4]). If \(H \) is cyclic, then every prime divisor of \(|H| \) is a Mersenne prime. If \(H \) is meta-cyclic, obviously, \((m, n) = 1 \) and \(\langle a \rangle \) is normal in \(H \). Since for every element \(x \) of \(\langle a \rangle \), \(\langle x \rangle \) is normal in \(H \), we have every element of order \(l \) of \(\langle a \rangle \) commutes with all elements of order \(l \) in \(\langle b \rangle \). In fact, otherwise there exists an element \(x_0 \in \langle a \rangle \) and \(y_0 \in \langle b \rangle \) such that \(\langle x_0 \rangle \not= \langle y_0 \rangle \) is a Frobenius group by Lemma 2, then \(K: \langle x_0 \rangle \not= \langle y_0 \rangle \) is a 2-Frobenius group. Now we regard as \(K \) a \((x_0 \rangle \langle y_0 \rangle \)-module. By 8.3.5 of [3] we know that \(C_2(\langle y_0 \rangle) \not= 1 \), it implies that 2 is connected to an odd prime in the prime graph of \(G \), a contradiction. Since orders of \(a, b \) are both square-free, we have \(ab = ba \), hence \(H \) is abelian, a contradiction.

Case 2: \(G \) is a 2-Frobenius group. Suppose that \(G \) is \(ABC \), where \(A \) and \(AB \) are normal subgroups of \(G \), \(AB \) and \(BC \) are Frobenius group with kernel \(A \), \(B \) and complements \(B \), \(C \) respectively. Since \(B \) and \(C \) are both cyclic and \(B \) is of odd order, we have \(2 \mid |AC| \). Hence \(AC \) is a 2-group since \(s(AC) = 2 \). By Lemma 3 we have \(exp(AC) \geq 4 \), a contradiction.

Case 3: There exists a non abelian simple group \(S \) such that \(S \leq H = G/N \leq Aut(S) \), where \(N \) is the maximal normal soluble subgroup of \(G \). Since \(N \) and \(H/S \) are \(\pi_4(G) \)-groups, \(N \) is a 2-group. In addition, since Sylow 2-subgroup of \(G \) is an elementary abelian group, we have \(G \cong N.S^* \), where \(S^* \leq Aut(S) \). Since the prime graph \(G/K(S) \) is disconnected and \(2 \) is a component of \(G/K(S) \), by papers [2] and [5] it is easy to check that \(S \) is \(L_2(2^f) \), \(L_3(2^f) \) or \(Sz(2^{2m+1}) \). Since centralizers of field automorphisms of them have an element of order 2, we have \(S^* = S \). Furthermore, the exponents of Sylow 2-subgroups of \(L_3(2^f) \) and \(Sz(2^{2m+1}) \) are more than 2, so \(S^* = L_2(2^f) \).

Now suppose that \(T \) is a Frobenius subgroup of \(S \) of order \(2(2^f+1) \). Then \(N \not= T \). By Lemma 3, the exponent of Sylow 2-subgroup of \(N \): \(T \) is more than 2, a contradiction. Therefore \(N = 1 \).

Since \(w(2^f) = \{2^f \mid 1\} = \phi(2^f - 1 \times 2^f) \times (2^f + 1) \), we have

\[
\pi(\phi(2^m - 1)) \subseteq \pi(2^m + 1) \cup \{2\},
\]

(\(^*2\))

and similarly we have

\[
\pi(\phi(2^m + 1)) \subseteq \pi(2^m - 1) \cup \{2\}.
\]

(\(^*3\))

Suppose that \(p \) is an odd prime divisor of \(f \). Let \(r_p \) and \(r_{2p} \) are primitive prime divisors of \(2^p - 1 \) and \(2^{2p} - 1 \), respectively. Then \(p \mid r_p - 1 \) and \(2p \mid r_{2p} - 1 \). Also since \(r_p \mid \phi(2^i - 1) \) and \(r_{2p} \mid \phi(2^{2i} + 1) \), we have \(p \mid \phi(2^i - 1) \) and \(2p \mid \phi(2^{2i} + 1) \). On the other hand, by (\(^*2\)), (\(^*3\)), \(\phi(2^f - 1) \), \(\phi(2^{2f} + 1) \) has only prime divisor 2 since \(2^f - 1, 2^f + 1 \). Thus \(f \) is a power of 2, say, \(2^n \). Denote by \(F_n \) the Fermat number \(2^{2^n} + 1 \). If \(1 \leq n \leq 4 \), it is easy to check that \(PSL_2(2^n) \) is satisfied the conditions of Theorem. If \(n = 5 \), then \(17449 \mid \phi(2^6) \), but does not divide \(2^{32} - 1 = 3 \times 5 \times 17 \times 257 \times 65537 \), a contradiction. If \(n \geq 6 \), then \(2^{2^n-1} = F_1 F_2 \ldots F_{n-1} \). Thus \(F_3 \mid 2^{2^{256}} - 1 \). Since \(F_3 = 641 \times 6700417 \), we have \(3 \mid \phi(F_3) \mid \phi(2^{17}) - 1 \), and hence \(3 \mid 2^{256} + 1 \) by the (\(^*2\)), a contradiction.
REFERENCES:

1 Project supported by the NNSF of China (No.11026195) and the foundation of Educational Department of Hubei Province in China (No.Q20111901).
