Research Journal of Pure Algebra -1(1), Apr. - 2011, Page: 2-5
R ] p A Available online through www.rjpa.info

A NOTE ON WEISENER THEOREM'
Rulin Shen*
Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei, P. R. China, 445000
*E-mail: rulinshen @gmail.com

(Received on: 25-01-11; Accepted on: 23-02-11)

ABSTRACT

Le: n(n) be the prime divisor set of n and called that n is a w(n)-number. Denote by n, the greatest divisor of n whose
prime divisor set is . Let G be a finite group. Weisener Theorem states that the number w(n) of elements whose orders
are multiples of n is either zero, or a multiple of |Gl Gipam) In this paper we classify groups satisfied w(n) is 0 or a
©(IGI\x(n) -number.
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1. INTRODUCTION AND LEMMAS:

A fundamental result of Frobenius states that in a finite group the number of elements which satisfy the equation x"=1,
where n divides the order of the group, is divisible by n. This theorem and several generalizations were obtained by
Frobenius at the turn of the 1900s. These results have stimulated a great amount of interest in counting solutions of
equations in groups. Afterwards, Weisener gave a theorem about quantitative relations of numbers of elements (see
Theorem 3, [6]). Let G be a finite group of order IGl. Let o(g) denote the order of g(€G). Let W(n)={xEG: n
lo(x)} where a, b means a divides b and let w(n)=I1W(n)l. Clearly, w(1)=IGI. Let n(n) be the prime divisor set of n and
called that n is a t(n)-number (we also assume that 1 is a T-number). Denote by n, the greatest divisor of n whose prime
divisor set is 7. Let G be a finite group. Weisener theorem states that the number w(n) of elements whose orders are
multiples of n is either zero, or a multiple of |Gl;iGim)- In this paper we classify groups satisfied w(n) is a
7(IGI)\r(n)-number. We prove

Theorem: Suppose that w(n) is 0, or a z(IG1)\z(n)-number for all n. Then G is one of the following groups
(@) Zyy

(b) Frobenius groups K: Z,, where Sylow subgroup of K is of order a Fermat prime or isomorphic to Zs%;
(c) Frobenius groups Z,*: H, where H is cyclic and Sylow subgroup of H is of order a Mersenne prime.

(d) Simple groups PSL,(2%), PSL,(2*), PSL,(2*) and PSL,(2'°).
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Next we will cite some lemmas. On the set 7(1Gl) we define a graph GK(G), called prime graph, whose vertices set is

7(IG1) with the following adjacency relation: vertices r and s in 7(1Gl) are joined by edge if and only if rs is the order of
some element of G. Denote the connected components of the graph by {z;, i=1,...,s:=s(G)}, s(G) is said to the number
of connected components of G and if 2 € z(G), denote the component containing 2 by m; always. The structure of the
group which the number of connected components of prime graph is more than 1 is due to Gruenberg and Kegel as
follows. Recall that a 2-Frobenius group G is ABC, where A and AB are normal subgroups of G AB and BC are

Frobenius group with kernel A, B and complements B, C respectively.
Lemma: 1 If a finite group G has the disconnected prime graph, then one of the following statements holds:
(1) s(G)=2 and G is a Frobenius group or 2-Frobenius.

(2) there exists a non-abelian simple group S such that S< H=G/N < Aut(S), where N is the maximal normal soluble

subgroup of G. Furthermore, N and H/S are 7;(G)-subgroups, the prime graph GK(S) is disconnected.
In [2] and [5] the prime graph components of non-abelian simple groups are given.

Lemma: 2 If 7(G)={p, q} with p, g both odd primes, and G has no element of order pg, then G is a Frobenius group or

a 2-Frobenius group.
Lemma: 3 Let G=ABC be a 2-Frobenius group as above. Suppose that AC is a p-group. Then exp (AC) > p*.

Proof: Without loss of generality, we assume that A is elementary abelian p-group and C is of order p. We regard BC
acts on the vector space A. Since p does not divide |Bl and B acts nontrivially, A has a basis that is permuted
semi-regularly by C. This means that all orbits have size |C| (see Theorem 15.16, [1]. Let x;, x,,...,x, be one C-orbit of
basis vectors. Then the subgroup of A generated by the {x|, x... x,} is elementary of order p”, and a basis is permuted
transitively by C. The p-group generated by {x), x,... x,} and C, therefore, is isomorphic to the wreath product of a
cyclic group Z, by itself. That wreath product has exponent p*. More specifically, let ¢ generate C. Then the element x; ¢

has order p*.

2. Proof of Theorem: Let 7.(G) be the set of order of elements of G and n(IGl) ={py, p2, ..., pm}. Denote by s; the
number of elements of order i. Suppose that IGl=p,"' p,"...p,"" and 7 is a maximal order in 7.(G). And let IGlamy=
pl‘” pzuz...pl"l. Since w(n) is a {pi1, Pi2s ---» Pmj-number and @(n) | w(n) with ¢ Euler function, we have n is a
square-free number, that is a multiple of some primes. Thus every order of non-unit elements is a multiple of primes.
Now if there is odd prime order p which is not maximal in 7(G). Without loss of generality, we assume that p - p;.

Then we have the following identity formula

PP = W(P) = SytW(pri)+w(pra)+... +w(pry),

where { ), 12, ..., 1} € 7(1GINp;}. So W(pr;) has no element of order 2p for i=1,2,..., h. In fact, otherwise w(2p) is
odd, but w(p) and w(pr;) is even for r#2 since 2 | p-1 | @(p) | w(p) and w(pr;). This contradicts above equality.
Therefore, odd prime p is disconnected to 2 in the prime graph of G, that is 2 is a component of GK(G). By Lemma 1

we divide into three cases to discuss.

Case 1: G is a Frobenius group. Suppose that K and H are kernel and complement of G, respectively. Then H is one of

square-free order since Sylow subgroup of H is a cyclic group of order prime.

If 2 | I1HI, then [HI=2 since s (G) =2. In addition, since K is nilpotent, suppose that z (K) = {p;, p>... p},
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then W(p1 p2-.. pk):2t, i.e.,

P -D(E: D). (p-1D=2" D

Denote by 1, the primitive prime divisor of q™1 if r, | g™1, but r, cannot divide q'-1 for every i<n. By Zsigmondy
theorem [7] there exists r, always except the cases (n, g) =(6,2) and (n, q)=(2,2k—1) with nature number k.. If ;> 3, then
there primitive prime divisor of p;"~1, and hence (*1) has no solution. If t;=2, then pi2—1:2t0, that is (p+1)( pi-1)= 29
and so p; =3. If t; =1, then p; is a Fermat prime. Therefore Sylow subgroup of K is isomorphic to Z;* or Z, with p a

Fermat prime.

If 2 I IKI, then K is elementary abelian 2-group and H is of square-free order. Hence H is cyclic or a metacyclic group
with generated relations  (a, b: a"=b"=1, a’=a") , where ((r-1)m,n)=1, " =1(mod n) and |Hl=mn (see 10.1.10, [4]). If
H is cyclic, then every prime divisor of |1H| is a Mersenne prime. If H is meta-cyclic, obviously, (m, n)=1 and (a) is
normal in H. Since for every element x of (a) , <{x) is normal in H, we have every element of order prime in (a)

commutes with all elements of order prime in  {b) . In fact, otherwise there exists an element x,€ (a) and y,€ (b)
such that (x¢) ¥, isa Frobenius group by Lemma 2, then K: <(x,) ¥o) isa2-Frobenius group. Now we regard
asKisa (xy) ¥ -module. By 8.3.5 of [3] we know that Cx( (y,’ )# 1, it implies that 2 is connected to an odd prime
in the prime graph of G, a contradiction. Since orders of a, b are both square-free, we have ab=ba, hence H is abelian, a

contradiction.

Case 2: G is a 2-Frobenius group. Suppose that G is ABC, where A and AB are normal subgroups of G AB and BC are
Frobenius group with kernel A, B and complements B, C respectively. Since B and C are both cyclic and B is of odd

order, we have 2 | IACI. Hence AC is a 2-group since s(G)=2. By Lemma 3 we have exp (AC) = 4, a contradiction.

Case 3: There exists a non abelian simple group S such that S< H=G/N < Aut(S), where N is the maximal normal
soluble subgroup of G.. Since N and H/S are m;(G)-groups, N is a 2-group. In addition, since Sylow 2-subgroup of G
is an elementary abelian group, we have GLN:S*, where S< S*< Aut(S). Since the prime graph GK(S) is disconnected
and 2 is a component of GK(S), by papers [2] and [5] it is easy to check that S is L2(2f), L3(2f) or Sz(22m+1). Since
centralizers of field automorphisms of them have an element of order 2, we have S*=S. Furthermore, the exponents of
Sylow 2-subgroups of L3(2) and Sz(2*™") are more than 2, so S* is L,(2").

Now suppose that T is a Frobenius subgroup of S of order 2(2° -1). Then N: T is a 2-Frobenius group. By Lemma 3, the
exponent of Sylow 2-subgroup of N: T is more than 2, a contradiction. Therefore N=1.
Since w (27-1) =s {2"-1} = (2" -1x2"" x (2" +1), we have

n(e(2"-1) cn(2" +1) U {2}, (*2)
and similarly we have
n(e(2" +1)) cn(2™ -1 U {2} (*3)

Suppose that p is an odd prime divisor of f. Let r, and r,, are primitive prime divisors of 2P -1 and 2% _1, respectively.
Then p | 1,-1 and 2p | 1, -1. Also since r,-1 1 ¢ (2-1) and 15, -1 | (2" +1), we have p | (¢(2" -1),p(2" +1)). On the other
hand, by (*2), (*3), (¢ (2" -1), (2" +1)) has only prime divisor 2 since (2" -1, 2" +1)=1. Thus f is a power of 2, say, 2".
Denote by F, the Fermat number 22 41 If 1< n< 4, it is easy to check that PSL,(2?") is satisfied the conditions of
Theorem. If n=5, then 17449 | ¢ (2**+1), but does not divide 2**-1=3X5X 17X 257 X 65537, a contradiction. If n> 6,
then 2*"-1=F, F,...F,.;. Thus Fs | 2*™-1. Since Fs=641X 6700417, we have 3 | ¢(Fs) | ¢(2*™ -1), and hence 3 | 2%™ +1

by the (¥2), a contradiction.
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