Research Journal of Pure Algebra -1(1), Apr. - 2011, Page: 2-5 **RJPA** Available online through <u>www.rjpa.info</u>

A NOTE ON WEISENER THEOREM¹

Rulin Shen*

Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei, P. R. China, 445000

*E-mail: rulinshen@gmail.com

(Received on: 25-01-11; Accepted on: 23-02-11)

ABSTRACT

Let $\pi(n)$ be the prime divisor set of n and called that n is a $\pi(n)$ -number. Denote by n_{π} the greatest divisor of n whose

prime divisor set is π . Let G be a finite group. Weisener Theorem states that the number w(n) of elements whose orders are multiples of n is either zero, or a multiple of $|G|_{\pi(|G|),\pi(n)}$. In this paper we classify groups satisfied w(n) is 0 or a $\pi(|G|)\pi(n)$ -number.

Keywords: Weisener theorem, number of elements, finite groups.

MR (2000): 20D60, 20D06.

1. INTRODUCTION AND LEMMAS:

A fundamental result of Frobenius states that in a finite group the number of elements which satisfy the equation $x^n = 1$, where n divides the order of the group, is divisible by *n*. This theorem and several generalizations were obtained by Frobenius at the turn of the 1900s. These results have stimulated a great amount of interest in counting solutions of equations in groups. Afterwards, Weisener gave a theorem about quantitative relations of numbers of elements (see Theorem 3, [6]). Let *G* be a finite group of order |G|. Let o(g) denote the order of $g(\in G)$. Let $W(n)=\{x\in G: n | o(x)\}$ where *a*, *b* means *a* divides *b* and let w(n)=|W(n)|. Clearly, w(1)=|G|. Let $\pi(n)$ be the prime divisor set of n and called that n is a $\pi(n)$ -number (we also assume that 1 is a π -number). Denote by n_{π} the greatest divisor of n whose prime divisor set is π . Let *G* be a finite group. Weisener theorem states that the number w(n) of elements whose orders are multiples of n is either zero, or a multiple of $|G|_{\pi(|G|)/\pi(n)}$. In this paper we classify groups satisfied w(n) is a $\pi(|G|)/\pi(n)$ -number. We prove

Theorem: Suppose that w(n) is 0, or a $\pi(|G|) \setminus \pi(n)$ -number for all *n*. Then *G* is one of the following groups (a) Z₂;

(b) Frobenius groups K: Z_2 , where Sylow subgroup of K is of order a Fermat prime or isomorphic to Z_3^2 ;

(c) Frobenius groups Z_2^k : *H*, where *H* is cyclic and Sylow subgroup of *H* is of order a Mersenne prime.

(d) Simple groups $PSL_2(2^2)$, $PSL_2(2^4)$, $PSL_2(2^8)$ and $PSL_2(2^{16})$.

Rulin Shen*/A note on weisener theorem¹/RJPA-1(1), Apr.-2011, Page: 2-5

Next we will cite some lemmas. On the set $\pi(|G|)$ we define a graph GK(G), called prime graph, whose vertices set is $\pi(|G|)$ with the following adjacency relation: vertices *r* and *s* in $\pi(|G|)$ are joined by edge if and only if *rs* is the order of some element of *G*. Denote the connected components of the graph by $\{\pi_i, i=1,...,s:=s(G)\}$, s(G) is said to the number of connected components of *G* and if $2 \in \pi(G)$, denote the component containing 2 by π_1 always. The structure of the group which the number of connected components of prime graph is more than 1 is due to Gruenberg and Kegel as follows. Recall that a 2-Frobenius group *G* is *ABC*, where *A* and *AB* are normal subgroups of *G*, *AB* and *BC* are Frobenius group with kernel *A*, *B* and complements *B*, *C* respectively.

Lemma: 1 If a finite group G has the disconnected prime graph, then one of the following statements holds:

(1) s(G)=2 and G is a Frobenius group or 2-Frobenius.

(2) there exists a non-abelian simple group *S* such that $S \le H = G/N \le Aut(S)$, where *N* is the maximal normal soluble subgroup of *G*. Furthermore, N and H/S are $\pi_I(G)$ -subgroups, the prime graph GK(S) is disconnected.

In [2] and [5] the prime graph components of non-abelian simple groups are given.

Lemma: 2 If $\pi(G) = \{p, q\}$ with *p*, *q* both odd primes, and *G* has no element of order *pq*, then *G* is a Frobenius group or a 2-Frobenius group.

Lemma: 3 Let G = ABC be a 2-Frobenius group as above. Suppose that AC is a p-group. Then exp $(AC) \ge p^2$.

Proof: Without loss of generality, we assume that *A* is elementary abelian *p*-group and *C* is of order *p*. We regard *BC* acts on the vector space *A*. Since *p* does not divide |B| and *B* acts nontrivially, *A* has a basis that is permuted semi-regularly by *C*. This means that all orbits have size |C| (see Theorem 15.16, [1]. Let $x_1, x_2, ..., x_p$ be one *C*-orbit of basis vectors. Then the subgroup of A generated by the $\{x_1, x_2, ..., x_p\}$ is elementary of order p^p , and a basis is permuted transitively by *C*. The p-group generated by $\{x_1, x_2, ..., x_p\}$ and *C*, therefore, is isomorphic to the wreath product of a cyclic group Z_p by itself. That wreath product has exponent p^2 . More specifically, let *c* generate *C*. Then the element $x_i c$ has order p^2 .

2. Proof of Theorem: Let $\pi_e(G)$ be the set of order of elements of G and $\pi(|G|) = \{p_1, p_2, ..., p_m\}$. Denote by s_i the number of elements of order *i*. Suppose that $|G|=p_1^{u_1} p_2^{u_2} ... p_m^{um}$ and *n* is a maximal order in $\pi_e(G)$. And let $|G|_{\pi(n)}=p_1^{u_1} p_2^{u_2} ... p_1^{u_1}$. Since w(n) is a $\{p_{l+1}, p_{l+2}, ..., p_m\}$ -number and $\phi(n) \mid w(n)$ with ϕ Euler function, we have n is a square-free number, that is a multiple of some primes. Thus every order of non-unit elements is a multiple of primes. Now if there is odd prime order *p* which is not maximal in $\pi_e(G)$. Without loss of generality, we assume that $p = p_1$. Then we have the following identity formula

$$p_2^{t2}...p_m^{tm} = w(p) = s_p + w(pr_1) + w(pr_2) + ... + w(pr_h),$$

where $\{r_1, r_2, ..., r_h\} \subseteq \pi(|G|) \setminus \{p_1\}$. So W(pr_i) has no element of order 2p for i=1,2,...,h. In fact, otherwise w(2p) is odd, but w(p) and w(pr_i) is even for $r_i \neq 2$ since $2 \mid p-1 \mid \varphi(p) \mid w(p)$ and w(pr_i). This contradicts above equality. Therefore, odd prime p is disconnected to 2 in the prime graph of G, that is 2 is a component of GK(G). By Lemma 1 we divide into three cases to discuss.

Case 1: *G is a Frobenius group.* Suppose that *K* and *H* are kernel and complement of *G*, respectively. Then *H* is one of square-free order since Sylow subgroup of *H* is a cyclic group of order prime.

If 2 | |H|, then |H|=2 since s(G) = 2. In addition, since K is nilpotent, suppose that $\pi(K) = \{p_1, p_2 \dots p_k\}$, © 2011, *RJPA*. All Rights Reserved Rulin Shen*/ A note on weisener theorem¹/RJPA-1(1), Apr.-2011, Page: 2-5

then $w(p_1 p_2 ... p_k)=2^t$, i.e.,

$$(p_1^{t1} - 1)(p_2^{t2} - 1)...(p_k^{tk} - 1) = 2^t.$$
 (*1)

Denote by r_n the primitive prime divisor of q^{n-1} if $r_n | q^{n-1}$, but r_n cannot divide q^{i-1} for every i<n. By Zsigmondy theorem [7] there exists r_n always except the cases (n, q) = (6,2) and $(n, q) = (2,2^{k}-1)$ with nature number k.. If $t_i \ge 3$, then there primitive prime divisor of $p_i^{ti}-1$, and hence (*1) has no solution. If $t_i=2$, then $p_i^{2}-1=2^{i0}$, that is $(p_i+1)(p_i-1)=2^{i0}$, and so $p_i = 3$. If $t_i = 1$, then p_i is a Fermat prime. Therefore Sylow subgroup of K is isomorphic to Z_3^2 or Z_p with p a Fermat prime.

If 2 | |K|, then K is elementary abelian 2-group and H is of square-free order. Hence H is cyclic or a metacyclic group with generated relations $\langle a, b: a^m = b^n = 1, a^b = a^r \rangle$, where $((r-1)m,n)=1, r^m \equiv 1 \pmod{n}$ and |H|=mn (see 10.1.10, [4]). If *H* is cyclic, then every prime divisor of |H| is a Mersenne prime. If *H* is meta-cyclic, obviously, (m, n)=1 and $\langle a \rangle$ is normal in *H*. Since for every element x of $\langle a \rangle$, $\langle x \rangle$ is normal in *H*, we have every element of order prime in $\langle a \rangle$ commutes with all elements of order prime in $\langle b \rangle$. In fact, otherwise there exists an element $x_0 \in \langle a \rangle$ and $y_0 \in \langle b \rangle$ such that $\langle x_0 \rangle = y_0 \rangle$ is a Frobenius group by Lemma 2, then K: $\langle x_0 \rangle = y_0 \rangle$ is a 2-Frobenius group. Now we regard as *K* is a $\langle x_0 \rangle = y_0 \rangle$ -module. By 8.3.5 of [3] we know that $C_K(\langle y_0 \rangle) \neq 1$, it implies that 2 is connected to an odd prime in the prime graph of *G*, a contradiction. Since orders of *a*, *b* are both square-free, we have ab=ba, hence *H* is abelian, a contradiction.

Case 2: *G* is a 2-Frobenius group. Suppose that *G* is *ABC*, where *A* and *AB* are normal subgroups of *G*, *AB* and *BC* are Frobenius group with kernel *A*, *B* and complements *B*, *C* respectively. Since *B* and *C* are both cyclic and *B* is of odd order, we have 2 ||AC|. Hence *AC* is a 2-group since s(G)=2. By Lemma 3 we have $exp(AC) \ge 4$, a contradiction.

Case 3: There exists a non abelian simple group S such that $S \le H = G/N \le Aut(S)$, where N is the maximal normal soluble subgroup of G. Since N and H/S are $\pi_1(G)$ -groups, N is a 2-group. In addition, since Sylow 2-subgroup of G is an elementary abelian group, we have $G \cong N:S^*$, where $S \le S^* \le Aut(S)$. Since the prime graph GK(S) is disconnected and 2 is a component of GK(S), by papers [2] and [5] it is easy to check that S is $L_2(2^f)$, $L_3(2^f)$ or $Sz(2^{2m+1})$. Since centralizers of field automorphisms of them have an element of order 2, we have $S^*=S$. Furthermore, the exponents of Sylow 2-subgroups of $L_3(2^f)$ and $Sz(2^{2m+1})$ are more than 2, so S^* is $L_2(2^f)$.

Now suppose that *T* is a Frobenius subgroup of S of order $2(2^{f} - 1)$. Then *N*: *T* is a 2-Frobenius group. By Lemma 3, the exponent of Sylow 2-subgroup of *N*: *T* is more than 2, a contradiction. Therefore *N*=1. Since w $(2^{f} - 1) = s \{2^{f} - 1\} = \phi (2^{f} - 1 \times 2^{f-1} \times (2^{f} + 1))$, we have

$$\pi \left(\varphi(2^{m} - 1) \right) \subseteq \pi(2^{m} + 1) \cup \{2\}, \tag{*2}$$

and similarly we have

$$\pi (\varphi(2^{m}+1)) \subseteq \pi(2^{m}-1) \cup \{2\}.$$
(*3)

Suppose that *p* is an odd prime divisor of *f*. Let r_p and r_{2p} are primitive prime divisors of $2^p - 1$ and $2^{2p} - 1$, respectively. Then $p | r_{p}-1$ and $2p | r_{2p} - 1$. Also since $r_p-1 | \phi (2^f-1)$ and $r_{2p} - 1 | \phi(2^f+1)$, we have $p | (\phi(2^f-1),\phi(2^f+1))$. On the other hand, by (*2), (*3), ($\phi (2^f-1), \phi(2^f+1)$) has only prime divisor 2 since $(2^f-1, 2^f+1)=1$. Thus f is a power of 2, say, 2^n . Denote by F_n the Fermat number $2^{2n} + 1$. If $1 \le n \le 4$, it is easy to check that $PSL_2(2^{2n})$ is satisfied the conditions of Theorem. If n=5, then $17449 | \phi (2^{32}+1)$, but does not divide $2^{32}-1=3 \times 5 \times 17 \times 257 \times 65537$, a contradiction. If $n \ge 6$, then $2^{2n}-1=F_0 F_1...F_{n-1}$. Thus $F_5 | 2^{2^n}-1$. Since $F_5=641 \times 6700417$, we have $3 | \phi(F_5) | \phi(2^{2^n}-1)$, and hence $3 | 2^{2^n}+1$ by the (*2), a contradiction.

Rulin Shen*/A note on weisener theorem¹/RJPA- 1(1), Apr.-2011, Page: 2-5

REFERENCES:

- [1] Isaacs, I. M., Character theory of finite group, Acdemic Prees, NewYork, San Francisco, London, 1976.
- [2] Kondratev A.S., Prime graph components finite simple groups, Mat. sbornik, 180, No.6(1989), 787-797.
- [3] Kurzweil Hans, Stellmacher Bernd, The theory of finite groups: an introduction, Springer-Verlag New York, Inc., 2004.
- [4] Robinson D.J.S, A course in the theory of groups, Springer-Verlag, New York, 1982.
- [5] Williams J.S., Prime Graph Components of Finite Groups, J.Alg., 1981, 69: 487-513.
- [6] Weisne L., On the number of elements of a group, which have a power in a given conjugate set, Bull. Amer. Math. Soc. 31, (1925), 492-496.
- [7] Zsigmondy K., Zur Theorie der Potenzreste, Monatsh.Math.Und Phys. 3(1892), 265-284.

¹ Project supported by the NNSF of China (No.11026195) and the foundation of Educational Department of Hubei Province in China (No.Q20111901).
