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ABSTRACT 

Let �(n) be the prime divisor set of n and called that n is a �(n)-number. Denote by n� the greatest divisor of n whose 

prime divisor set is �. Let G be a finite group. Weisener Theorem states that the number w(n) of elements whose orders 

are multiples of n is either zero, or a multiple of |G|�(|G|)\�(n). In this paper we classify groups satisfied w(n) is 0 or a 

�(|G|)\�(n) -number. 
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1. INTRODUCTION AND LEMMAS: 

 

A fundamental result of Frobenius states that in a finite group the number of elements which satisfy the equation xn
=1, 

where n divides the order of the group, is divisible by n. This theorem and several generalizations were obtained by 

Frobenius at the turn of the 1900s. These results have stimulated a great amount of interest in counting solutions of 

equations in groups. Afterwards, Weisener gave a theorem about quantitative relations of numbers of elements (see 

Theorem 3, [6]). Let G be a finite group of order |G|.  Let o(g) denote the order  of g( G).  Let W(n)={x G: n 

|o(x)} where a, b means a divides b and let w(n)=|W(n)|.  Clearly, w(1)=|G|. Let �(n) be the prime divisor set of n and 

called that n is a �(n)-number (we also assume that 1 is a �-number). Denote by n� the greatest divisor of n whose prime 

divisor set is �.  Let G be a finite group. Weisener theorem states that the number w(n) of elements whose orders are 

multiples of n is either zero, or a multiple of |G|�(|G|)\�(n). In this paper we classify groups satisfied w(n) is a 

�(|G|)\�(n)-number. We prove  

 

Theorem:  Suppose that w(n) is 0, or a �(|G|)\�(n)-number for all n. Then G is one of the following groups 

(a)  Z2; 

 

(b)  Frobenius groups K: Z2, where Sylow subgroup of K is of order a Fermat prime or isomorphic to Z3
2; 

 

(c)  Frobenius groups Z2
k: H, where H is cyclic and Sylow subgroup of H is of order a Mersenne prime. 

 

(d)  Simple groups PSL2(2
2), PSL2(2

4), PSL2(2
8) and PSL2(2

16). 
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Next we will cite some lemmas. On the set �(|G|) we define a graph GK(G), called prime graph, whose vertices set is 

�(|G|) with the following adjacency relation: vertices r and s in �(|G|) are joined by edge if and only if rs is the order of 

some element of G. Denote the connected components of the graph by {�i, i=1,…,s:=s(G)}, s(G) is said to the number 

of connected components of G and if 2 �(G), denote the component containing 2 by �1 always. The structure of the 

group which the number of connected components of prime graph is more than 1 is due to Gruenberg and Kegel as 

follows. Recall that a 2-Frobenius group G is ABC, where A and AB are normal subgroups of G, AB and BC are 

Frobenius group with kernel A, B and complements B, C respectively.  

 

Lemma: 1 If a finite group G has the disconnected prime graph, then one of the following statements holds:  

 

(1) s(G)=2 and G is a Frobenius group or 2-Frobenius. 

 

(2) there exists a non-abelian simple group S such that S� H=G/N � Aut(S), where N is the maximal normal soluble 

subgroup of G. Furthermore, N and H/S are �1(G)-subgroups, the prime graph GK(S) is disconnected. 

 

In [2] and [5] the prime graph components of non-abelian simple groups are given. 

 

Lemma: 2 If �(G)={p, q} with p, q both odd primes, and G has no element of order pq, then G is a Frobenius group or 

a 2-Frobenius group. 

 

Lemma: 3 Let G=ABC be a 2-Frobenius group as above. Suppose that AC is a p-group. Then exp (AC) � p2. 

 

Proof:  Without loss of generality, we assume that A is elementary abelian p-group and C is of order p. We regard BC 

acts on the vector space A. Since p does not divide |B| and B acts nontrivially, A has a basis that is permuted 

semi-regularly by C. This means that all orbits have size |C| (see Theorem 15.16, [1]. Let x1, x2,…,xp be one C-orbit of 

basis vectors. Then the subgroup of A generated by the {x1, x2… xp} is elementary of order pp, and a basis is permuted 

transitively by C. The p-group generated by {x1, x2… xp} and C, therefore, is isomorphic to the wreath product of a 

cyclic group Zp by itself. That wreath product has exponent p2. More specifically, let c generate C. Then the element xi c 

has order p2.                           

 

2. Proof of Theorem:  Let �e(G) be the set of order of elements of G and �(|G|) ={p1, p2, …, pm}. Denote by si the 

number of elements of order i.  Suppose that |G|=p1
u1 p2

u2…pm
um and n is a maximal order in �e(G). And let |G|�(n)= 

p1
u1 p2

u2…pl
ul. Since w(n) is a {pl+1, pl+2, …, pm}-number and �(n) | w(n) with � Euler function, we have n is a 

square-free number, that is a multiple of some primes. Thus every order of non-unit elements is a multiple of primes. 

Now if there is odd prime order p which is not maximal in �e(G). Without loss of generality, we assume that p = p1. 

Then we have the following identity formula 

 

p2
t2…pm

tm 
= w(p) = sp+w(pr1)+w(pr2)+… +w(prh), 

 

where { r1, r2, …, rh} ⊆ �(|G|)\{p1}. So W(pri)  has no element of order 2p for i=1,2,…, h. In fact, otherwise w(2p) is 

odd, but w(p) and w(pri) is even for r 2 since 2 | p-1 | �(p) | w(p) and w(pri). This contradicts above equality. 

Therefore, odd prime p is disconnected to 2 in the prime graph of G, that is 2 is a component of GK(G). By Lemma 1 

we divide into three cases to discuss. 

 

Case 1: G is a Frobenius group. Suppose that K and H are kernel and complement of G, respectively. Then H is one of 

square-free order since Sylow subgroup of H is a cyclic group of order prime. 

 

If 2 | |H|, then |H|=2 since s (G) =2.  In addition, since K is nilpotent, suppose that � (K) = {p1, p2… pk},  
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then w(p1 p2 … pk)=2t, i.e., 

 

(p1
t1 -1)(p2

t2 -1)… (pk
tk -1)=2t.                                             (*1)  

 

Denote by rn the primitive prime divisor of qn-1 if rn | qn-1, but rn cannot divide qi-1 for every i<n. By Zsigmondy 

theorem [7] there exists rn always except the cases (n, q) =(6,2) and (n, q)=(2,2k-1) with nature number k.. If ti � 3, then 

there primitive prime divisor of , and hence (*1) has no solution. If ti=2, then pi
2-1=2t0, that is (pi+1)( pi-1)= 2t0, 

and so pi =3. If ti =1, then pi is a Fermat prime. Therefore Sylow subgroup of K is isomorphic to Z3
2 or Zp with p a 

Fermat prime. 

 

If 2 | |K|, then K is elementary abelian 2-group and H is of square-free order. Hence H is cyclic or a metacyclic group 

with generated relations a, b: a
m
=b

n
=1, a

b
=a

r , where ((r-1)m,n)=1, rm 
�1(mod n) and |H|=mn (see 10.1.10, [4]). If 

H is cyclic, then every prime divisor of |H| is a Mersenne prime. If H is meta-cyclic, obviously, (m, n)=1 and a is 

normal in H. Since for every element x of a , x is normal in H, we have every element of order prime in a  

commutes with all elements of order prime in b . In fact, otherwise there exists an element x0 a and y0 b

such that x0 y0  is a Frobenius group by Lemma 2, then K: x0 y0  is a 2-Frobenius group. Now we regard 

as K is a x0 y0 -module. By 8.3.5 of [3] we know that CK( y0 )� 1, it implies that 2 is connected to an odd prime 

in the prime graph of G, a contradiction. Since orders of a, b are both square-free, we have ab=ba, hence H is abelian, a 

contradiction. 

 

Case 2: G is a 2-Frobenius group. Suppose that G is ABC, where A and AB are normal subgroups of G, AB and BC are 

Frobenius group with kernel A, B and complements B, C respectively. Since B and C are both cyclic and B is of odd 

order, we have 2 | |AC|. Hence AC is a 2-group since s(G)=2. By Lemma 3 we have exp (AC)  4, a contradiction. 

 

Case 3: There exists a non abelian simple group S such that S� H=G/N � Aut(S), where N is the maximal normal 

soluble subgroup of G..  Since N and H/S are �1(G)-groups, N is a 2-group. In addition, since Sylow 2-subgroup of G 

is an elementary abelian group, we have G N:S*, where S� S*� Aut(S). Since the prime graph GK(S) is disconnected 

and 2 is a component of GK(S), by papers [2] and [5] it is easy to check that S is L2(2
f), L3(2

f) or Sz(22m+1).  Since 

centralizers of field automorphisms of them have an element of order 2, we have S*=S. Furthermore, the exponents of 

Sylow 2-subgroups of L3(2
f) and Sz(22m+1) are more than 2, so S* is L2(2

f). 

 

Now suppose that T is a Frobenius subgroup of S of order 2(2f -1). Then N: T is a 2-Frobenius group. By Lemma 3, the 

exponent of Sylow 2-subgroup of N: T is more than 2, a contradiction. Therefore N=1.  

Since w (2f -1) =s {2f -1} =� (2f -1�2f-1 � (2f +1), we have 

 

� (�(2m -1)) ⊆ �(2m +1) {2},                                       (*2)  

and similarly we have  

                        � (�(2m +1)) ⊆ �(2m -1) {2}.                                            (*3) 

 

Suppose that p is an odd prime divisor of f. Let rp and r2p are primitive prime divisors of 2p -1 and 22p -1, respectively. 

Then p | rp-1 and 2p | r2p -1. Also since rp-1 | � (2f-1) and r2p -1 | �(2f +1), we have p | (�(2f -1),�(2f +1)). On the other 

hand, by (*2), (*3), (� (2f -1), �(2f +1)) has only prime divisor 2 since (2f -1, 2f +1)=1. Thus f is a power of 2, say, 2n. 

Denote by Fn the Fermat number 22n +1. If 1� n� 4, it is easy to check that PSL2(2
2n) is satisfied the conditions of 

Theorem. If n=5, then 17449 | � (232+1), but does not divide 232-1= 5 17 257 65537, a contradiction. If n� 6, 

then 22n-1=F0 F1…Fn-1. Thus F5 | 2
2^n-1. Since F5=641 6700417, we have 3 | �(F5) | �(22^n -1), and hence 3 | 22^n +1 

by the (*2), a contradiction.        
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