# International Research Journal of Pure Algebra-7(8), 2017, 799-805 Available online through www.rjpa.info ISSN 2248-9037 ### ISOMORPHISM THEOREMS ON M-FUZZY SOFT INTERSECTION IDEALS J. REGALA JEBALILY<sup>1</sup>, G. SUBBIAH<sup>2\*</sup> AND V. NAGARAJAN<sup>3</sup> <sup>1</sup>Assistant Professor in Mathematics, Eithiraj College for Women, Egmore, Chennai-600 008, Tamil Nadu, India. <sup>2</sup>\*Associate Professor in Mathematics, Sri K.G.S. Arts College, Srivaikuntam-628 619, Tamil Nadu, India. <sup>3</sup>Assistant Professor in Mathematics, S.T.Hindu College, Nagercoil-629 002, Tamil Nadu, India. (Received On: 01-08-17; Revised & Accepted On: 21-08-17) #### **ABSTRACT** The aim of the paper to lay a foundation for providing a soft fuzzy algebraic tool in considering many problems that contain uncertainties. In order to provide these soft fuzzy algebraic structures, the notion of M-fuzzy soft intersection groups which is a generalization of that fuzzy soft groups is provided. By introducing the notion soft fuzzy cosets, soft fuzzy quotient groups based on M-fuzzy soft intersection ideals are established. Finally, isomorphism theorems of M-fuzzy soft intersection groups related to invariant fuzzy soft sets are discussed. **Key Words:** M-fuzzy soft intersection group, soft set, soft intersection group, M-fuzzy soft int-ideal, soft fuzzy coset, soft fuzzy quotient group, invariant fuzzy soft set, extended image set. ### **SECTION -1: INTRODUCTION** The notion of fuzzy set was introduced by L.A.Zadeh[ 19], and since then this concept has been applied to various algebraic structure. Molodtsov[15] initiated the concept of soft sets that is free from the difficulties that have troubled the usual theoretical approaches. Molodtsov pointed out several directions for the applications of soft sets. Maji et.al [14] gave the operations of soft sets and their properties. Furthermore, they [9] introduced fuzzy soft sets which combine the strength of both soft sets and fuzzy sets. As a generalization of the soft set theory, the fuzzy soft set theory makes description of the objective world more realistic, practical precise in some cases, making it very promising. Since the notion of soft groups was proposed by Aktas and Cagman [2], then the soft set theory is used a new tool to discuss algebraic structures. Acar et.al [3] initiated the concepts of soft rings similar to soft groups. Liu et.al [13] further the investigated isomorphism and fuzzy isomorphism theories of soft rings in [16], respectively. Soft sets were also applied to other algebraic structures such as near-rings [16], Γ-modulus and BCK/BCI-algebras[10].Bhakat and Das [7] proposed the concept of M-fuzzy subgroups. Cagman et.al [8] studied on soft int-group, which are different from the definitions of soft groups [2]. The new approach is based on the inclusion relation and intersection of sets. It brings the soft set theory, the set theory, and the group theory together. On the basic of soft int-groups, Sezgin et.al [16] introduced the concept of soft intersection near-rings (soft int-near rings) by using intersection operation of sets and gave the applications of soft int near-rings to the near-ring theory. By introducing soft intersection, union products and soft characteristic functions, made a new approach to the classical ring theory via the soft set theory, with the concepts of soft union rings, ideals and bi-ideal. Jun et.al [11] applied intersectional soft sets to BCK/BCI-algebras [10] and obtained many results. [18] discussed the concept of M-fuzzy subgroups. In this paper, we lay a foundation for providing a soft fuzzy algebraic tool in considering many problems that contain uncertainties. In order to provide these soft fuzzy algebraic structures, the notion of M-fuzzy soft int-groups which is a generalization of that fuzzy soft groups is provided. By introducing the notion soft fuzzy cosets, soft fuzzy quotient groups based on M-fuzzy soft int-ideals are established. Finally, isomorphism theorems of M-fuzzy soft int-groups related to invariant fuzzy soft sets are discussed. Corresponding Author: G. Subbiah<sup>2\*</sup> <sup>2</sup>\*Associate Professor in Mathematics, Sri K.G.S. Arts College, Srivaikuntam-628 619, Tamil Nadu, India. #### **SECTION -2: PRELIMINARIES** In this section, we would like to recall some basic notions related to soft sets and soft int-groups. Throughout the paper, G denote arbitrary groups and $e_1$ , and $e_2$ are the identity elements of $G_1$ , and $G_2$ respectively. U is an initial universe and E is a set of parameters under the conditions with respect to U. A and B are subsets of E. The set of all subsets of U is denoted by P(U). Molodtsov [15] defined the concept of soft sets in the following way. **Definition 2.1:** [15] A soft set $f_A$ over U is defined as $f_A$ : $E \to P(U)$ such that $f_A(x) = \emptyset$ if $x \notin A$ . In other words, a soft set U is a parameterized family of subsets of the universe U. For all $\epsilon \in A$ , $f_A(\epsilon)$ may be considered as the set of $\epsilon$ -approximate elements of the soft set $f_A$ . A soft set $f_A$ over U can be presented by the set of ordered pairs: $$f_A = \{(x, f_A(x)) / x \in E, f_A(x) = P(U)\}$$ Clearly, a soft set is not a set. For illustration, Molodtsov consider several examples in [15]. If $f_A$ is a soft set over U, then the image of $f_A$ is defined by $\text{Im}(f_A) = \{f_A(a)/a \in A\}$ . The set of all soft sets over U will be denoted by S(U). Some of the operations of soft sets are listed as follows. **Definition 2.2:** [4] Let $f_A, f_B \in S(U)$ . If $f_A(x) \subseteq f_B(x)$ , for all $x \in E$ , then $f_A$ is called a soft subset of $f_B$ and denoted by $f_A \subseteq f_B$ . $f_A$ and $f_B$ are called soft equal, denoted by $f_A = f_B$ if and only if $f_A \subseteq f_B$ and $f_B \subseteq f_A$ . **Definition 2.3:** [17] Let $f_A, f_B \in S(U)$ and $\chi$ be a function from A to B. Then the soft anti-image of $f_A$ under $\chi$ denoted by $\chi(f_A)$ , is a soft set over U defined by, $$\chi_{f_A}(\mathbf{b}) = \begin{cases} \bigcap \{ f_A(a)/a \in A, \chi(a) = b \}, & \text{if } \chi^{-1}(b) \neq \emptyset \\ 0 & \text{oterwise} \end{cases}$$ $\chi_{f_A}(b) = \begin{cases} \bigcap \{ f_A(a)/a \in A, \chi(a) = b \}, & \text{if } \chi^{-1}(b) \neq \emptyset \\ 0, & \text{oterwise} \end{cases}$ for all $b \in B$ . And the soft preimage of $f_B$ under $\chi$ , denoted by $\chi^{-1}(f_B)$ , is a soft set over U defined by $\chi^{-1}_{f_B}(a) = f_B(\chi(a))$ , for all $a \in A$ . Note that the concept of level sets in the fuzzy set theory, Cagman et.al initiated the concept of lower inclusions soft sets which serves as a bridge between soft sets and crisp sets. **Definition 2.4:** Let G be a group and $f_G \in S(U)$ . Then $f_G$ is called a M- fuzzy soft intersection groupoid over U if $f_G(mxy) \supseteq f_G(x) \cap f_G(y)$ for all $x, y \in G$ . $f_G$ is called a fuzzy soft intersection group over U if the soft intersection groupoid satisfies $f_G(mx^{-1}) = f_G(x)$ for all $x \in G$ . For the sake of brevity, M- fuzzy soft intersection group is abbreviated by M-fuzzy soft int-group throughout this paper. **Example 1:** Assume that U=Z is the universal set and $G=Z_b$ is the subset of parameters. We define a soft set $f_G$ by $f_G(0) = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ $$f_G(1) = \{0, 2, 4, 6, 8, 10\}, f_G(2) = \{1, 3, 4, 6, 7\}, f_G(3) = \{0, 2, 3, 6, 9\}, f_G(4) = \{1, 3, 4, 6, 7\}$$ $f_G(5) = \{0, 2, 4, 6, 8, 10\}$ . It is clear that $f_G(1+Z) \not\supseteq f_G(1) \cap f_G(Z)$ , implying $f_G$ is not a soft int-group over U. **Lemma 1:** Let $f_G$ be a fuzzy soft set over U. If $f_G$ is a M-fuzzy soft int-group of G, then - (i) $f_G(mx^{-1}) \ge f_G(x)$ . (ii) $f_G(ex^{-1}) \ge f_G(x)$ for all $x \in G$ . **Proof:** (i) Assume that $f_G$ is a M-fuzzy soft int-group of G. Then for all $x \in G$ , we get that $f_G(mx^{-1}) \ge f_G((mx^{-1})^{-1}) = f_G(x)$ , (ii) It is straight forward. **Lemma 2:** Let $f_G$ be a fuzzy soft set over U. If $f_G$ is a M-fuzzy soft int-group of G, then (i) $f_G(e) \ge f_G(x)$ (ii) $f_G(e.1) \ge f_G(x)$ for all $x \in G$ . **Proof:** (i) Assume that $f_G$ is a M-fuzzy soft int-group of G. Then for all $x \in G$ , we get that - (i) $f_G(e) = f_G(xx^{-1}) \ge f_G(x) \cap f_G(x^{-1}) \ge f_G(x)$ (By Lemma: 1) - (ii) It is straight forward. **Definition 2.5:** Let $f_G$ be a fuzzy soft set over U. $f_G$ is called a M-fuzzy soft int-group of U if - (i) $f_G(mxy) \ge f_G(x) \cap f_G(y)$ (ii) $f_G(mx^{-1}) = f_G(x)$ for all $x, y \in G$ . **Example-2:** Let $\mathbb{Z}/(3) = \{\overline{0}, \overline{1}, \overline{2}\}$ be a modulo 3 residue class group, $A = \{\lambda_1, \lambda_2\}$ . Define a fuzzy soft set (F, A) over $\langle \mathbb{Z}/(3), + \rangle$ as; $F(\lambda_1)(\overline{0}) = 0.3$ , $F(\lambda_1)(\overline{1}) = 0.6$ , $F(\lambda_1)(\overline{2}) = 0.8$ , $F(\lambda_2)(\overline{0}) = 0.4$ , $F(\lambda_2)(\overline{1}) = 0.5$ , $F(\lambda_2)(\overline{2}) = 0.7$ . It is easy verify that $F(\lambda_1)$ , $F(\lambda_2)$ are fuzzy subgroups of $\langle \mathbb{Z}/(3), + \rangle$ . Therefore (F, A) is a M-fuzzy soft int-groups over $\langle \mathbb{Z}/(3), + \rangle$ . **Example 3:** Let $G = \{e, x, y, z\}$ be the group with the binary operation defined below. | * | e | х | у | Z | |---|------------------|---|---|---| | e | $\boldsymbol{E}$ | х | y | Z | | х | X | Z | e | у | | у | Y | e | Z | х | | z | Z | y | х | e | Let $A = \{h_1, h_2\}$ be the set of parameters. For each parameter $h_1 \in A$ , $F(h_1)$ : $G \rightarrow [0,1]$ . For each parameter we define $F(h_1) = \{ < e, 0.6>, < x, 0.75>, < y, 0.62>, < z, 0.31> \}$ , $F(h_2) = \{ < e, 0.77>, < x, 0.88>, < y, 0.92>, < z, 0.7> \}$ . Here (F, A) is fuzzy soft int-group. Combining Lemma: 2 and Definition: 2.5, we obtain the following characterization of M-fuzzy soft int-groups. **Theorem 2.1:** A fuzzy soft set $f_G$ over U is a M-fuzzy soft int-group over U if and only if $f_G(mxy^{-1}) \ge f_G(x) \cap f_G(y)$ for all $x, y \in G$ . **Proof:** Suppose that $f_G$ is a M-fuzzy soft int-group over U. Then $f_G(mxy^{-1}) \ge f_G(x) \cap f_G(y^{-1}) = f_G(x) \cap f_G(y)$ for all $x, y \in G$ . Conversely, suppose that $f_G(mxy^{-1}) \ge f_G(x) \cap f_G(y)$ for all $x, y \in G$ . First, choosing x=e yields $f_G(my^{-1}) \ge f_G(y)$ . Thus, $f_G(my) = f_G((my^{-1})^{-1}) \ge f_G(y^{-1})$ . Hence $f_G(y) = f_G(y^{-1})$ . Secondly $f_G(mxy) = f_G(mx(y^{-1})^{-1}) \ge f_G(x) \cap f_G(y^{-1}) = f_G(x) \cap f_G(y)$ . Therefore $f_G$ is a M-fuzzy soft int-group over U. **Theorem 2.2:** Let $f_G$ over U is a M-fuzzy soft int-group over U and $x \in G$ . Then $f_G(mxy) \ge f_G(y)$ for all $y \in G$ if and only if $f_G(mx) = f_G(e)$ . **Proof:** Let $f_G(mxy) \ge f_G(y)$ for all $y \in G$ . Choosing y = e yields $f_G(x) \ge f_G(e)$ , thus by Lemma: 2, $f_G(x) = f_G(e)$ . Conversely, let $f_G(x) = f_G(e)$ . Then $f_G(mxy) \ge f_G(x) \cap f_G(y) = f_G(e) \cap f_G(y) = f_G(y)$ . **Theorem 2.3:** Let $f_G$ and $f_H$ be M-fuzzy soft int-group over U. Then $f_G \wedge f_H$ is also a M -fuzzy soft int-group over U. $$\begin{split} \textbf{Proof: Let } & (x_1,y_1), (x_2,y_2) \in G \times H. \text{ Then} \\ & f_{G \Lambda H} \left( (x_1,y_1)(x_2,y_2)^{-1} \right) = f_{G \Lambda H} \left( x_1 x_2^{-1}, y_1 y_2^{-1} \right) \\ & = f_G \left( x_1 x_2^{-1} \right) \cap f_H(y_1 y_2^{-1}) \\ & \geq \left( f_G(x_1) \cap f_G(x_2) \right) \cap \left( f_H(y_1) \cap f_H(y_2) \right) \\ & = \left( f_G(x_1) \cap f_H(y_1) \right) \cap \left( f_G(x_2) \cap f_H(y_2) \right) \\ & = f_{G \Lambda H} \left( x_1, y_1 \right) \cap f_{G \Lambda H} \left( x_2, y_2 \right). \end{split}$$ Therefore, $f_G \wedge f_H$ is a M-fuzzy soft int-group over U. Note that $f_G \vee f_H$ is not a M-fuzzy soft int-group over U. **Definition 2.6:** Let $f_A$ , $f_B \in S$ (U). Then, $\Lambda$ -Product and V- Sum of $f_A$ and $f_B$ , denoted by $f_A f_B$ and $f_A V f_B$ , are defined by $f_A \Lambda_B(x,y) = f_A(x) \cap f_B(y)$ , $f_{AVB}(x,y) = f_A(x) \cup f_B(y)$ for all $x, y \in E$ respectively. **Definition 2.7:** Let $f_G$ and $f_H$ be M-fuzzy soft int-groups over U. Then, the product of soft int-groups $f_G$ and $f_H$ is defined as $f_G \times f_H = f_{G \times H}$ where $f_{G\times H}(x,y)\alpha = f_G(x)\times f_H(y)\cup\beta \text{ for all } (x,y)\in G\times H.$ **Theorem 2.4:** If $f_G$ and $f_H$ be M-fuzzy soft int-groups over U, then so is $f_G \times f_H$ over U×U. **Proof:** By definition: 2.7, let $f_G \times f_H = f_{G \times H}$ where $f_{G \times H}(x,y) = f_G(x) \times f_H(y)$ for all $(x,y) \in G \times H$ . Then for all $(x_1,y_1), (x_2,y_2) \in G \times H$ , $f_{G \times H}((x_1,y_1)(x_2,y_2)^{-1}) = f_{G \times H}(x_1x_2^{-1},y_1y_2^{-1}) = f_G(x_1x_2^{-1}) \times f_H(y_1y_2^{-1}) \geq (f_G(x_1) \cap f_G(x_2)) \times (f_H(y_1) \cap f_H(y_2) = (f_G(x_1) \times f_H(y_1)) \cap (f_G(x_2) \times f_H(y_2)) = f_{G \times H}(x_1,y_1) \cap f_{G \times H}(x_2,y_2)$ . Hence, $f_G \times f_H = f_{G \times H}$ is fuzzy soft int-groups over U×U. **Theorem 2.5:** Let $f_H$ be M-fuzzy soft int-group over U and h be a homomorphism from G to H. Then $h^{-1}(f_H)$ is M-fuzzy soft int-group over U. **Proof:** Let $x, y \in G$ . Then, $$h^{-1}(f_H)(xy) = f_H(h(xy)) = f_H(h(x)h(y)) \ge f_H(h(x)) \cap f_H(h(y)) = h^{-1}(f_H)(x) \cap h^{-1}(f_H)(y).$$ Also, $h^{-1}(f_H)(x^{-1}) = f_H(h(x^{-1})) = f_H(h(x))^{-1} = f_H(h(x)) = h^{-1}(f_H)(x)$ Hence, $h^{-1}(f_H)$ is M-fuzzy soft int-group over U. **Definition 2.8:** A fuzzy soft set $f_G$ over U is called M-fuzzy soft interior ideal of G if it satisfies $f_G(xy \ge f_G(x) \cap f_G(y), f_G(xwy) \ge f_G(x)$ for all $x, y, w \in G$ . **Definition 2.9:** Let $f_G$ be a M-fuzzy soft interior ideal of G; then E Im( $f_G$ ) is called the extended image set of $f_G$ , where E Im( $f_G$ ) = Im( $f_G$ ) $\cup$ ( $\alpha$ , $\beta$ ). Now we characterize M-fuzzy soft int-ideals by upper inclusion. **Theorem 2.6:** Let $f_G$ be a fuzzy soft set over U and E Im( $f_G$ ) a totally order set in inclusion. Then $f_G$ is a M-fuzzy soft interior ideal of G if and only if $\bigcup (f_G: \lambda)$ is an ideal of G, whenever it is non empty, for each $\lambda \subseteq U$ where $\beta \le \lambda < \alpha$ . **Proof:** Assume that $f_G$ is a M-fuzzy soft interior ideal of G and $\bigcup (f_G: \lambda)$ is non empty. It is sufficient to show that $x \ y \in \cup (f_G: \lambda)$ . Let $x, \ y \in \cup (f_G: \lambda)$ it follows that $f_G(x) \ge \lambda$ and $f_G(y) \ge \lambda$ . Since $f_G$ is a M-fuzzy soft interior ideal of G and E Im $(f_G)$ a totally order set, then $$f_G(xy) \ge f_G(x) \cap f_G(y) \ge \lambda \cup \lambda = \lambda < \alpha,$$ $f_G(xwy) \ge f_G(x) \ge \lambda \cup \lambda = \lambda < \alpha.$ And thus $f_G(xy) \ge \alpha$ . Hence $x y \in \bigcup (f_G: \lambda)$ . Therefore $\bigcup (f_G: \lambda)$ is an ideal of G. Conversely, assume that $\cup (f_G:\lambda)$ is an ideal of G, whenever it is non empty, for each $\lambda\subseteq U$ where $\beta\leq\lambda<\alpha$ . Suppose that $f_G(xy)\geq f_G(x)\cap f_G(y)$ does not holds for some $x,\ y\in G$ ; then there exists $x_0,y_0\in G$ such that $f_G(x_0y_0)\leq\lambda=(f_G(x_0)\cap f_G(y_0))$ . There fore $f_G(x_0)\cap f_G(y_0)\supseteq\lambda$ ; that is $x_0y_0\notin \cup (f_G:\lambda)$ which is contradiction. Hence $f_G(xy)\geq f_G(x)\cap f_G(y)$ , for all $x,y\in R$ . Similarly, we can prove that $f_G(xwy) \ge f_G(x)$ for all $x, y, w \in G$ . Thus, $f_G$ is a M-fuzzy soft interior ideal of G. **Theorem 2.7:** Let $f_G$ be a fuzzy soft set over U and $\chi$ is a group homomorphism from $G_1$ to $G_2$ . If $f_{G_1}$ is a M-fuzzy soft interior ideal of $G_2$ , then $\chi^{-1}(f_{G_2})$ is a M-fuzzy soft interior ideal of $G_1$ . **Proof:** Let $x_1, x_2 \in G_1$ . Then $\chi^{-1}(f_{G_2})(x_1x_2) = f_{G_2}(\chi(x_1x_2)) = f_{G_2}(\chi(x_1).\chi(x_2)) \ge f_{G_2}(\chi(x_1)) \cap f_{G_2}(\chi(x_2)) = \chi^{-1}(f_{G_2})(x_1) \cap \chi^{-1}(f_{G_2})(x_2).$ Moreover, we have $$\chi^{-1}(f_{G_2})(x_1wx_2) = f_{G_2}(\chi(x_1wx_2)) = f_{G_2}(\chi(x_1).\chi(w).\chi(x_2)) \ge (f_{G_2}(\chi(x_1))) = \chi^{-1}(f_{G_2})(x_1).$$ Hence $\chi^{-1}(f_{G_2})$ is a - fuzzy soft interior ideal of $G_1$ . **Theorem 2.8:** Let $f_{G_1}$ be a fuzzy soft set over U and $\chi$ a group epimorphism from $G_1$ to $G_2$ . If $f_{G_1}$ is a M-fuzzy soft interior ideal of $G_1$ , then $\chi(f_{G_1})$ is M-fuzzy soft interior ideal of $G_2$ and $(\chi(f_{G_1})(e_2) = (f_{G_1})(e_1)$ . **Proof:** Let $y_1, y_2 \in G_2$ and $f_{G_1}$ is a $(\alpha, \beta)$ -fuzzy soft interior ideal of $G_1$ . Since $\chi$ is a group epimorphism from $G_1$ to $G_2$ , then $\chi^{-1}(y_1) \neq \emptyset$ and $\chi^{-1}(y_2) \neq \emptyset$ . And thus, there exist $x_1, x_2 \in G_1$ such that $\chi(x_1) = y_1, \chi(x_2) = y_2$ . There fore, we have $\chi(f_{G_1})(y_1y_2) = \bigcap\{f_{G_1}(x_1x_2)/\chi(x_1x_2) = y_1y_2\} = \bigcap\{f_{G_1}(x_1)/\chi(x_1) = y_1\} \bigcap\{f_{G_1}(x_2)/\chi(x_2) = y_2\} = \bigcap\{f_{G_1}(x_1)/\chi(x_1) = y_1\} \bigcap\{f_{G_1}(x_2)/\chi(x_2) = y_2\} = \chi(f_{G_1})(y_1) \bigcap \chi(f_{G_1})(y_2) \chi(f_{G_1})(y_1wy_2) = \bigcap\{f_{G_1}(y_1wy_2)/\chi(x_1wx_2) = y_1wy_2\} = \bigcap\{f_{G_1}(y_1)/\chi(x_1) = y_1 = \bigcap\{f_{G_1}(x_1)/\chi(x_1) = y_1\} \cap \{f_{G_1}(y_1)/\chi(x_1) \cap$ Therefore $\chi(f_{G_1})$ is M-fuzzy soft interior ideal of $G_2$ . By lemma: 2, we have $\chi(f_{G_1})(e_2) = \bigcap \{f_{G_1}(x)/x \in G_1, \chi(x) = e_2\} = \bigcap \{(f_{G_1}(x))/x \in G_1, \chi(x) = e_2\} = f_{G_1}(e_1).$ ### **SECTION-3: SOFT FUZZY QUOTIENT GROUPS** The main purpose of this section is to give an approach for constructing soft fuzzy quotient groups based on M-fuzzy soft interior ideals. Such approaches involve the concept of soft fuzzy cosets. In addition, some simple characterizations of soft fuzzy cosets are presented. **Definition 3.1:** Let $f_G$ be a M-fuzzy soft int-group of G over U and $g \in G$ . Then, a soft fuzzy coset $g \oplus f_G$ of $f_G$ is defined by $(g \oplus f_G)(x) = f_G(x - g)$ , for all $x \in G$ . **Theorem 3.1:** Let $f_G$ be a M-fuzzy soft int-group of G over U and $a, b \in G$ . Then $f_G(ab) = f_G(e)$ if and only if $f_G(ba) = f_G(e)$ . **Proof:** Suppose that $f_G(ba) = f_G(e)$ Since $f_G$ is M-fuzzy soft int-group, then $f_G(ab) \ge f_G(ba) = f_G(e)$ By Lemma: 2, we have, $f_G(e) \ge f_G(ab)$ . Thus, $f_G(ab) = f_G(e)$ . Conversely, assume that $f_G(ab) = f_G(e)$ . We can prove that $f_G(ba) = f_G(e)$ in a similar way. **Proposition 3.2:** Let $f_G$ be a M-fuzzy soft int-group of G over U and $a, b \in G$ . Then $a \oplus f_G = b \oplus f_G$ if and only if $f_G(ab) = f_G(e)$ . **Proof:** Suppose that $f_G(ab) = f_G(e)$ Then $(b \oplus f_G)(x) = f_G(xb) = f_G(xaa^{-1}b) \ge f_G(xa) \cap f_G(a^{-1}b)$ $= f_G(xa) \cap f_G(e) \ge f_G(xa) = (a \oplus f_G)(x)$ for all $x \in G$ . Therefore $b \oplus f_G \ge a \oplus f_G$ . Similarly we can show that $a \oplus f_G \ge b \oplus f_G$ . Hence $b \oplus f_G = a \oplus f_G$ . Conversely, assume that $a \oplus f_G = b \oplus f_G$ . It follows that $f_G(ab) = (b \oplus f_G)(a) = (a \oplus f_G)(a) = f_G(e)$ . Based on the above proposition, we give a property related to soft fuzzy cosets as follows. **Proposition 3.3:** Let $f_G$ be a M-fuzzy soft int-ideal over U and $a, b, x, y \in G$ . If $x \oplus f_G = a \oplus f_G$ , $y \oplus f_G = b \oplus f_G$ , then $xy \oplus f_G = ab \oplus f_G$ , $xwy \oplus f_G = a \oplus f_G$ . **Proof:** Suppose $x \oplus f_G = a \oplus f_G$ , $y \oplus f_G = b \oplus f_G$ . Then, $f_G(xa) = f_G(e)$ and $f_G(yb) = f_G(e)$ , by proposition: 3.2. Since $f_G$ is a M-fuzzy soft int-ideal, then $f_G((xyab)) = f_G((xa.yb)) \ge f_G(xa) \cap f_G(yb) = f_G(e)$ On the other hand, it follows from Lemma: 2, $f_G(e) \ge f_G((xyab))$ Hence $f_G((xyab)) = f_G(e)$ , and so $xy \oplus f_G = ab \oplus f_G$ . More over $f_G((xwyab)) = f_G(xawy.aywb) = f_G(xay) \ge f_G(xa) = f_G(e)$ According to Lemma: 2, we get that $f_G(e) \ge f_G((xywab))$ , ie xwy $\bigoplus f_G = a \bigoplus f_G$ . Therefore, $f_G(e) \ge f_G((xyab))$ ; that is $xy \oplus f_G = ab \oplus f_G$ . In view of proposition: 3.2, we have the following result. **Proposition 3.4:** Let $f_G$ be a M-fuzzy soft int-ideal over U. Then $(G/f_G, ...)$ is a group, where $G/f_G \triangleq \{a \oplus f_G/a \in G\}$ , $(x \oplus f_G)$ $(y \oplus f_G) \triangleq xy \oplus f_G$ , and $(x \oplus f_G)w$ $(y \oplus f_G) \triangleq xy \oplus f_G$ , for all $x, y \in G$ . **Proof:** It is straight forward. **Definition 3.2:** Let $f_G$ be a M-fuzzy soft int-ideal over U. Then $(G/f_G, ...)$ is called a soft fuzzy quotient group. **Theorem 3.5:** Let $f_G$ be a M-fuzzy soft int-ideal over U. Then $G/f_G^* \cong G/f_G$ . **Proof:** Assume that $h: G \to G/f_G$ such that $h(x) = x \oplus f_G$ , for all $x \in G$ . It is easy to see that h is a surjective homomorphism from G to $G/f_G$ . Since $Kerl(h) = \{ x \in G/h(x) = e \oplus f_G \} = \{ x \in G/x \oplus f_G = e \oplus f_G \} = \{ x \in G/f_G(x) = f_G(e) \} = f_G^*$ . Therefore, $G/f_G^* \cong G/f_G$ . **Definition 3.3:** Let $\chi: G_1 \to G_2$ be a group homomorphism. A fuzzy soft set of $f_{G_1}$ over U is called invariant fuzzy soft set with respect to $\chi$ if $\chi(x_1) = \chi(x_2)$ implies $f_{G_1}(x_1) = f_{G_1}(x_2)$ for all $x_1, x_2 \in G_1$ . **Proposition 3.6:** Let $\chi: G_1 \to G_2$ be a group homomorphism and $f_{G_2}$ a fuzzy soft set of $G_2$ over U. Then, $\chi^{-1}(f_{G_2})$ is an invariant fuzzy soft set with respect to $\chi$ . **Proof:** Let $x_1, x_2 \in G_1$ such that $\chi(x_1) = \chi(x_2)$ . Then $\chi^{-1}(f_{G_2})(x_1) = f_{G_2}(\chi(x_1)) = f_{G_2}(\chi(x_2)) = \chi^{-1}(f_{G_2})(x_2)$ . Hence, $\chi^{-1}(f_{G_2})$ is an invariant fuzzy soft set with respect to $\chi$ . Next, we establish isomorphism theorems on M-fuzzy soft int-groups. **Theorem 3.7:** Let $\chi: G_1 \to G_2$ be an epimorphism and let M-fuzzy soft int-ideal $f_{G_1}$ be a invariant fuzzy soft set with respect to $\chi$ . Then $G_1/f_{G_1} \cong G_2/\chi(f_{G_1})$ . **Proof:** Let $\chi: G_1 \to G_2/\chi(f_{G_1})$ be a mapping such that $\chi(x) = \chi(x) \oplus f_{G_1}$ , for all $x \in G_1$ . Obviously, $\chi$ is an epimorphism. Since $f_{G_1}$ be a invariant fuzzy soft set with respect to $\chi$ , $$\operatorname{Ker}(\chi) = \{ x \in G_1 / \chi(x) = e_2 \oplus \chi(f_{G_1}) \} = \{ x \in G_1 / \chi(x) \oplus \chi(f_{G_1}) = e_2 \oplus \chi(f_{G_1}) \}$$ $$= \{ x \in G_1 / \chi(f_{G_1}) \chi(x) = \chi(f_{G_1})(e_2) \} = \{ x \in G_1 / \chi \oplus f_{G_1} = e_1 \oplus f_{G_1} \} = f_{G_1}^*$$ Therefore, $G_1/{f_{G_1}}^* \cong G_2/\chi(f_{G_1})$ . By theorem: 3.2, we have $G_1/{f_{G_1}}^* \cong G_1/{f_{G_1}}$ . Hence $G_1/{f_{G_1}} \cong G_2/\chi(f_{G_1})$ . **Proposition 3.8:** Let $\chi: G_1 \to G_2$ be an epimorphism and let M-fuzzy soft int-ideal $f_{G_2}$ be a invariant fuzzy soft set with respect to $\chi$ . Then $G_1/\chi^{-1}(f_{G_2}) \cong G_2/f_{G_2}$ . **Proof:** It follows from the theorem:3.5 and proposition :3.6, $\chi^{-1}(f_{G_2})$ is a M-fuzzy soft int-ideal of $G_1$ and $\chi^{-1}(f_{G_2})$ is a invariant fuzzy soft set with respect to $\chi$ . Since $\chi$ is an epimorphism, then $\chi(\chi^{-1}(f_{G_1})) = f_{G_2}$ . By theorem: 3.7, we get $G_1/\chi^{-1}(f_{G_2}) \cong G_2/f_{G_2}$ . ### CONCLUSION In this paper, using fuzzy soft sets and intersection of sets, we have defined M-fuzzy soft int-group that is new type of fuzzy soft group on a fuzzy soft set and then make theoretical studies of M-fuzzy soft int-groups and M-fuzzy soft int-ideals in more detail and improved several results. We have focused on M-fuzzy soft int-groups and M-fuzzy soft int-ideals, anti-image of fuzzy soft set and investigate these notions with respect to M- fuzzy soft int-groups and M-fuzzy soft int-ideals. #### **FUTURE WORK** To extend our work, further research can be done to study the properties of fuzzy soft substructures in other algebraic structures such as modules, rings and fields. #### REFERENCE - 1. Anthony, J. M. and Sherwood, H. Fuzzy Group Redefined, J. Math. Anal. Appl, 69, 1979), 124 130. - 2. H. Aktas.and N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726-2735. - 3. U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl. 59 (2010) 3458-3463. - 4. M.I. Ali, F. Feng, X. Liu, W.K.Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009), (9), 1547-1553. - 5. A.O. Atagun and A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl., 61 (3) (2011) 592-601. - 6. K.V. Babitha and J.J. Sunil, Soft set relations and functions, Comput. Math. Appl. 60 (7) (2010) 1840-1849. - 7. S. K. Bhakat and P. Das, (∈, ∈ Vq)-fuzzy subgroup, Fuzzy sets and systems, 80 (1996), 359-368 - N. Cagman and S. Enginoglu, Soft set theory and uni-int decision making, Eur. J. Oper. Res. 207 (2010) 848-855 - 9. N. Cagman and S. Engino glu, Soft matrix theory and its decision making, Comput. Math. Appl. 59 (2010) 3308-3314. - 10. Y.B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl. 56 (2008) 1408-1413. - 11. Y.B. Jun and C.H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform. Sci. 178 (2008) 2466-2475. - 12. Y.B. Jun, K.J. Lee, J. Zhan, Soft p-ideals of soft BCIalgebras, Comput. Math. Appl. 58 (2009) 2060-2068. - 13. X. Liu, D. Xiang and J. Zhan, Fuzzy isomorphism theorems of soft rings, Neural Comput. Appl. 21 (2012) 391(397 - 14. P. K. Maji, R. Biswas, A.R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003), 555-562. - 15. D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19-31. - 16. A. Sezgin, A.O. Atagun, E. Ayg"un, A note on soft near-rings and idealistic soft near-rings, Filomat, 25 (2011) 53-68. - 17. A. Sezgin and A.O. Atagun, On operations of Soft Sets, Comput. Math. Appl., 61 (5) (2011) 1457-1467. - 18. S.Subramanian and R.Nagarajan, Some Structure Properties of M- fuzzy groups, Applied Mathematical Sciences, Vol.6, No.11 (2012) 545-552. - 19. Zadeh, L. A. Fuzzy sets, Inform. and Control, 8, (1965), 338 353. ### Source of Support: Nil, Conflict of interest: None Declared [Copy right © 2017, RJPA. All Rights Reserved. This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]