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ABSTRACT 

In this paper, we mainly introduce several kinds of the Krylov subspace algorithms, the most representative are: 

CGNR algorithm, GMRES algorithm, BiCG algorithm, CGS algorithm, BiCGSTAB algorithm and QMR algorithm, and 
discuss the relationships between these algorithms and their respective advantages and disadvantages, and finally 
verify the correctness of the conclusions for a class of numerical examples. 
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1. CONJUGATE GRADIENT METHOD OF NORMAL EQUATION (CGNR) 
 
We know that the conjugate gradient method (CG) combining the proper preprocessing techniques is an effective way 
to solve large symmetric positive definite (s.p.d) linear equation set, such as incomplete LU decomposition. But, 
According to the foregoing description, for asymmetrical linear equation set: 

bAx =                                                                                        (1.1) 
It’s efficient solution is still an important subject to numerical calculation workers. A direct idea is that the original 

equations (1.1) can be pre multiplied by transpostion TA in to as .p.d equation with the same solution, and then solve the 
equivalent equation set by C Galgorithm: 

T TA Ax A b=                                                                  (1.2) 
or through variable substitution, we can solve the equivalent equation set: 

,T TAA y b x A y= =                                                                           (1.3) 
 
We call equation (1.2) as Normal Equations. Two typical algorithms of iteration methods which based on the normal 
equations are CGNR algorithm solving (1.2) and CGNE algorithm solving (1.3). CGNR method is discussed 
emphatically in this paper. 
 
1.1 Algorithm Introduction CGNR Algorithm 
 

1. Compute 0 0 0 0 0 0, ,Tr b Ax z A r p z= − = =  

2. Let 0,1, ,i =  until problem converges 

3. i iw Ap=  

4. 
2 2

2i i iz wα =  

5. 1i i i ix x pα+ = +  
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6. 1i i i ir r wα+ = −  

7. 1 1
T

i iz A r+ +=  

8. 
2 2

1 2 2i i iz zβ +=  

9. 1 1i i i ip z pβ+ += +  

 
1.2. Algorithm analyze 
 
The convergence of conjugate gradient algorithm largely depends on the condition number of coefficient matrix. The 
smaller the condition number, the convergence of conjugate gradient algorithm is better. CGNR algorithm is to use CG 

algorithm to solve the equivalent equation set T TA Ax A b= , but the condition number of matrix is the square of the 

condition number of matrix, it can slow down the convergence speed of the CGNR iterative greatly, this is the so-called 
"square condition number" effect. However, although it makes the condition number into the the square of the condition 
number of original equation, but the method of solving linear equations method sometimes performed very well in the 
competition, such as Trefe then pointed out that the convergence rate of the CGNR method only is determined by the 
singular value of matrix A [1], this is why, in some cases, especially when the matrix singular value’s distribution is 
concentrated, the convergence of this method will perform better than other methods, the numerical example of this 
chapter also validates it. 
 
2. THE GENERALIZED MINIMAL RESIDUAL ALGORITHM (GMRES) 
 
In Krylov subspace methods, if let m mL κ= and use the Arnoldi process make the matrix A into upper 

Hessenbergmatrix, then we can get the Arnoldi method, the corresponding algorithm is FOM algorithm; If let m mL Aκ=
combining Arnoldi process and the least square method, we can get the GMRES method. Let 1 2[ , ,..., ]m mV v v v=  be 

the matrix of standard orthogonal vector generated in the process of Arnoldi, mH is the upper Hessenberg matrix with 
( 1)m m+ ×  order which is gotten in this process, let 1 mm mAV V H+= Then, the approximate solution of the GMRES 
method are as follows: 

0m m mx x V y= +  of which， 1 2
arg min mmy e Hβ= − ， 0 2

rβ =
 

and solve the least square problem with Givens rotation method. As you can see, this method in Krylov subspace mκ has 
the minimum residual, but it is recurrence based on the Longformula, the vector stored and the computation increase 
rapidly with the iterative steps, when m is large, for example, need to save all the calculation 1{ }m

i iv = , for a large matrix, 
this will cause too much storage space requirements. In order to overcome this difficulty, Saad proposed GMRES method, 
namely the GMRES (m) algorithm [2]. 
 
3. BIORTHOGONAL LANCZOS ALGORITHM 
 

When taking T
m mL A κ= , we can get a series of method based on biorthogonal Lanczos process, such as BiCG, CGS, 

BiCGSTAB and QMR algorithm, etc. Here we will introduce these algorithms and give the relationships between the 
several methods. 
 
3.1. BiCGalgorithm 
 
BiCG algorithm is the process of projection in 
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2 1
1 1 1 1{ , , , , }m

m span v Av A v A vκ −=  and it’s residual orthogonaled in 

2 1
1 1 1 1{ , , ( ) , , ( ) }T T T m

m span w A w A w A wκ −=   

We usually let 1 0 0 2
v r r= ， 1w is arbitrary, and make 1 1( , ) 0v w ≠ , 1 1v w= . The 

derivation is similar with the conjugate gradient method, the LU decomposition of m m mT L U= ，of which mT is a 

tridiagonal matrix which is biorthogonaled by the asymmetric matrix A , we define 1
m m mP V U −= , the expressions of the 

solutions of solving the equation (1.1) as follows: 

)()()( 1
1

01
11

01
1

0 eLPxeLUVxeTVxx mmmmmmmm βββ −−−− +=+=+=  
With the same method ,we define the matrix 1

m m mP W L∗ −= , the column vector and the row vector of mP∗ is A - conjugate, 
this is because: 

1 1 1 1( )T T
m m m m m m m m mP AP L W AV U L T U I∗ − − − −= = =  

 
Thus, similar to the CG algorithm, BiCG algorithm can be get from the Lanczos process.  
BiCGalgorithm[3] 

1. Compute 0 0 ,r b Ax= − get 0r
∗ , let 0 0( , ) 0r r∗ ≠  

2. Let 0 0 0 0,p r p r∗ ∗= =  

3. For ,1,0=j until problem converges 

4. ( , ) ( , )j j j j jr r Ap pα ∗ ∗=
 

5. 1j j j jx x pα+ = +
 

6. 1j j j jr r Apα+ = −
 

7. 1
T

j j j jr r A pα∗ ∗ ∗
+ = −  

8. 1 1( , ) ( , )j j j j jr r r rβ ∗ ∗
+ +=  

9. 1 1j j j jp r pβ+ += +  

10. 1 1 1j j j jp r pβ∗ ∗ ∗
+ + += +  

 
As you can see, be similar to the GMRES algorithm, BiCG algorithm also meet Petrov-Galerkinconditions, only the 
residual polynomial satisfy the following biorthogonal conditions: 

2 1
1 1 1 1{ , , ( ) , , ( ) }T T T m

mr span w A w A w A w−⊥  . 

 
The difference is BiCG is based on the short form of recursive method, to some problem, it’s convergence speed faster but 
it doesn’t satisfy the optimal conditions. The problem of the curve characteristic of the residual norm is instability, 
turbulence in the iterative process, serious even not sure when the terminating. In order to improve the residual conditions, 
Freund proposed the QMR (Quasi Minimal Residual) method in 1991, its form is very similar to the GMRES method. 
Another disadvantage of BiCG method is using transposed matrix TA in the iterative process, which is inconvenient in 
some cases, Sonneveld observed by residual polynomial’s square of the BiCG algorithm to construct a new iterative 
format, which can avoid to use TA , thus we can get the square of the conjugate gradient method (CGS). 
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3.2. CGSalgorithm[4] 

1．Compute 0 0 ,r b Ax= − choose 0r
∗

,
 let 0 0( , ) 0r r∗ ≠  

2．Let 0 0 0p u r= =  

3．For ,1,0=j until problem converges  

4． 0 0( , ) ( , )j j jr r Ap rα ∗ ∗=  

5． j j j jq u Apα= −  

6． 1 ( )j j j j jx x u qα+ = + +  

7． 1 ( )j j j j jr r A u qα+ = − +  

8． 1 0 0( , ) ( , )j j jr r r rβ ∗ ∗
+=  

9． 1 1j j j ju r qβ+ += +  

10． 1 1 1( )j j j j j jp u q pβ β+ + += + +
 

 
Compared with BiCG algorithm, the above CGS algorithm on the one hand, doesn't have to Compute another group of 
vector jr∗ which is correspond with jr , simplify the programming code; On the other hand, it can avoid the product of the 

vector and the transposed matrix TA and improve operation efficiency. So that, if BiCG algorithm has a better 
convergence and stability, the absolute convergence speed of CGS is almost twice the BiCG. At the same time, we 
noticed that the convergence of the CGNR algorithm is strictly monotone decreasing, however, BiCG and CGS algorithm 
are both likely to disruptions, and its residual curve performance of ups and downs, turbulence, there is a potential 
instability. 
 
3.3. BiCGSTAB algorithm 
 
In order to overcome the potential instability of BiCG and the CGS method, Vander Vorst proposed the stable 

biorthogonal conjugate gradient algorithm, namely BiCGSTAB algorithm. The residual mr of CGS satisfy the relation

2
0( ( ))m mr p A r= , of which, 2

0( ( ))mp A r is the residual amount in the BiCG. But the residual of CGS is almost 

approximate square of BiCG，which leads to the oscillation of the convergence, in order to avoid the big oscillation, the 
residual amount written in the form: 

0( ) ( )m m mr q A p A r=
 

2
0( ( ))mp A r is the residual of BiCG, but we let ( )mq A be 

1 2( ) (1 )(1 ) (1 )m mq A A A Aω ω ω= − − −

 

and makes the residual mr still has the fast convergence of the CGS, that is the coefficient iω 1, ,i m=  meet the 

condition:  
1 02 2

min min (1 ) ( ) ( )
m m

m m m mr q A p A r
ω ω

ω −= −
 

this leads to the following BiCGSTAB algorithm.
  

BiCGSTAB algorithm [5] 

1．Compute 0 0 ,r b Ax= −
select 0r

∗  

2．Let 0 0p r=  

3．For ,1,0=j unit problem converges 

4． 0 0( , ) ( , )j j jr r Ap rα ∗ ∗=
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5． j j j js r Apα= −  

6． ( , ) ( , )j j j j jAs s As Asω =  

7． 1j j j j j jx x p sα ω+ = + +  

8． 1j j j jr s Asω+ = −  

9. 
1 0

0

( , )
( , )

j j
j

j j

r r
r r

α
β

ω

∗
+

∗= ×  

10 1 1 ( )j j j j j jp r p Apβ ω+ += + −
 

 
BiCGSTAB algorithm effectively overcomes the residual’s oscillation of CGS algorithm, at the same time, due to the 
character of the minimization, the convergence of the BiCG algorithm is more smooth than BiCG . 
 
4. NUMERICAL EXAMPLES 
 
To illustrate the merits and demerits of the above algorithm, we present numerical examples to verify it. we select the 
right vector b which makes the exact solutions of the equation set is Tx )1,,1,1( = . 
 
Example 1: Solve the equation set, Ax b= , of which, the coefficient matrix is the following block tridiagonal matrix: 

B I
I O

A

O I
I B

− 
 
 
 

=  
 
 −
  
 

 

  
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 

4 2
1.01 4 2 0

1.01

0 2
1.01 4

B

− 
 − − 
 −

=  
 
 
  − 

 

  

 

 
I  is a unit matrix with ten order, O  is a zero matrix with ten order, B is a tridiagonal matrix with ten order. Firstly, we 
will compare these three short recursion algorithm. The results of the iterations and residual curve as shown against (4.1). 

 
Figure-4.1: Iterations and residual curve of the three kind of Lanczos class 

 
Since QMR algorithm also belongs to the Lanczos algorithm, but it has the optimum properties which is similar to the 
GMRES algorithm, so the algorithm obtained is different with the above three short recursive, hence, we compare QMR 
algorithm and BiCGSTAB algorithm, get the residual curve is as follow: 
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Figure-4.2: The iterations and residual curve of BiCGSTAB and QMR 

 
Secondly, to illustrate the computational efficiency of Lanczos algorithm andnon-Lanczos class, and BiCGSTAB has 
better convergence in Lanczos algorithm, BiCGSTAB, GMRES and CGNR are compared, in order to find the pros and 
cons of these two kinds of algorithms. For the coefficient matrix in case 1, BiCGSTAB, the residual graph of GMRES and 
CGNR algorithm is show below (4.3): 

  
Figure-4.3: The iterations and residual curve of GMRES, BiCGSTAB and CGNR 

 
Comparison of the following two examples are similar with the example 1. 
 
Example 2: In this case, the matrix from matrix market (http://math.nist. gov/Matrix Market/), the condition number is 
1.7637 e+004, the number of non-zero element is 13151, order number is 2395, its structure as shown in the following 
figure (4.4): 

 
Figure-4.4: the structure of the matrix in example 2 
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The residual graph of Lanczos class algorithms is compared in the following figure (4.5): 

 
Figure-4.5: The iterations and residual curve of Lanczos class algorithms 

 
The residual graph of QMR algorithm and BiCGSTAB are compared in the following figure (4.6): 

 
Figure-4.6: The iterations and residual curve of BiCGSTAB and QMR 

 
The residual curve of BiCGSTAB, GMRES and CGNR algorithms are compared in the following figure (4.7): 

 
Figure-4.7: The iterations and residual curve of GMRES, BiCGSTAB and CGNR 
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Example 3: in this case, the matrix also from matrix market, the condition number is213.6310, the number of non-zero 
element is 19848, order number is 4960, its structure as shown in the figure (4.8) below: 

 
Figure-4.8: the structure of the matrix in example 3 

 
The residual curve of Lanczos class algorithms are compared in the following figure (4.9): 

 
Figure-4.9: The iterations and residual curve of Lanczos class algorithms 

 
The residual curve of QMR and BiCGSTAB algorithms are compared in the following figure (4.10):  

 
Figure-4.10: The iterations and residual curve of QMR and BiCGSTAB 
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The residual curve of BiCGSTAB, GMRES and CGNR algorithms are compared in the following figure (4.11):  

 
Figure-4.11: The iterations and residual curve of BiCGSTAB GMRES and CGNR 

 
In the above three examples, the CPU time executing each algorithm and the number of iterations is given in the 
following table (4.1): 
 

Table-4.1: CPU time and the number of iterations 
example algorithm CPU time(s) iteration number 

 
 
 

example1 

CGNR 0.003109 49 
GMRES(5) 0.020313 11 

BiCG 0.017026 49 
CGS 0.010129 34 

BiCGSTAB 0.017262 40 
QMR 0.062379 7 

 
 
 

example2 

CGNR 6.773385 9869 
GMRES(20) 1.335291 47 

BiCG 0.549048 340 
CGS 0.319929 271 

BiCGSTAB 0.697247 400 
QMR 2.116118 48 

 
 
 

example3 

CGNR 0.532815 63 
GMRES(10) 0.147617 8 

BiCG 0.145476 63 
CGS 0.071777 44 

BiCGSTAB 0.147617 58 
QMR 0.403715 4 

 
5. RESULTS ANALYSIS 
 

1. Figure 4.1, figure 4.5 and figure 4.9 are iterations and residual curves which are Lanczos classalgorithms namely 
BiCG, CGS and BiCGSTAB, from the comparison we can see that the CGS needs the smallest number of 
iterations, but its residual turbulence is the most serious; BiCGSTAB needs more iterationnumber than CGS, but 
its residual has the beststability. 

2. Figure4.2, figure 4.6 and figure 4.10 are the residual diagram of QMR and BiCGSTAB algorithm in Lanczos 
algorithm, in this example we given, iterations of QMR algorithm is much less than the iterations of BiCGSTAB 
algorithm, but it need more CPU time. 

3. Figure 4.3, figure 4.7 and figure 4.11 give the iterations and residual curves of BiCGSTAB and GMRES (m) 
and CGNR, seen from the figure, in solving theequations which have banded or claw structure matrix, 
GMRES (m) needs the least number of iterations required for convergence, hence, it has the best convergence; 
CGNR algorithm needs the most number of iteration required for convergence, but in case 1, although it needs 
the most number of iteration, its calculation speed is the fastest. Can also be concluded from the figure, 
compared with GMRES (m) and CGNR algorithm, BiCGSTAB has the oscillation residual error. 
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