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ABSTRACT 
Let RM is a right R-module over a ring R with ( )RS End M= , n is a nonnegative integer; L is a class of right R-

module .we study the coherence of the left S-module s M relative to L class, many extending known results. 
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1. INTRODUCTION 
 
Throughout this article, all rings are associative with identity and all modules are unitary. For a ring R, we write Mod-R 
for the category of all right R-modules. RM ( )R M denotes a right (left) R-module. As usual, E(M) denotes the 

injective envelope of M. For a module RM , we denote by S=End ( )RM the endomorphism ring of RM  and by Add 

RM  (resp. add RM ) the category consisting of all modules isomorphic to direct summands of (finite) direct sums of 

copies of RM . The category consisting of all modules isomorphic to direct summands of direct products of copies of 

RM  is denoted by Prod ( ).RM  
 
We first recall some known notions and facts which we need in the later sections. 
 
Following T.Y.lam (1998), a flat right R-module have the following equivalent characterization: 
 
Every homomorphism :f K N→  with K finitely presented factors through a finitely generated projective module. 

The equivalent characterization has been investigated by many authors. -flat left R-module was intruded and studied 
in N.Q. Ding et.al (1993). A left R-module N is -flat module if every homomorphism :f K N→ with K -finitely 

presented factors through a finitely generated free module; or equivalently ,if for any -finitely presented left R-module 
P and homomorphism :f P M→ , there is a finitely generated free module F and homomorphism : ,g P F→

:h f M→ such that f hg= .in Li.Xi. Mao et.al (2007), a left R-module N is -M -flat module if every 

homomorphism :f K N→ with K -finitely presented factors through a module of add RM  . 
 
Clarke (1976) called RM an R-Mittag-Leffler module if the canonical map J JM R M⊗ → is a monomorphism for 

every set J, or equivalently, if for every finitely generated submodule N of M, the inclusion N M→  factors through 
a finitely generated right R-module (see Goodearl, 1972, Theorem 1 or Clarke, 1976, Theorem 2.4). The concept of R-
Mittag-Leffler modules was called finitely pure-projective modules by Azumaya (see Azumaya, 1987, Note added in 
proof, p.134). A right R-module N is -Mittag-Leffer(see Li.Xi.Mao and N.Q.Ding 2007) if every homomorphism 

:f K N→  with K -finitely presented factors through a finitely presented right R-module .For further concepts and 

notations about -Mittag-Leffer R-module, we refer the reader to Li Xi Mao et.al (2007). 
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Let τ = (F, C) of classes of right R-modules is a cotorsion theory. A right R-module is -finitely generated if there is a 
finitely generated submodule 'M of M such that / ' .M M τ∈  A right R-module is -finitely presented if there exists 
an exact sequence 0 0,K F M→ → → → where F is finitely generated free and K is τ -finitely generated. Let n 
is a nonnegative integer. A right R-module is τ -n-finitely presented if there exists an exact sequence

1 2 10 ... 0.n nK F F F M−→ → → → → → →  where iF  is finitely generated free and K is τ -finitely generated.  
 
The main purpose of this article is to extend the above mentioned fact to a more general setting. In section 2,we 
introduce the concept of L-finitely generated, L-finitely presented, by expending the concept of Mτ − -flat module 
and τ -mittag-leffler module, we got the concept of L-n-M-flat module and L-n-Mittag-Leffler module, given some 
basic properties of the above concepts. 
 
2. DEFINITION AND GENERAL RESULTS 
 
In this section first we define L-n-M-flat module and L-n-Mittag-Leffler module, study the basic properties of them. 
 
Definition 2.1: Let L is a class of module, RM  is a right R-module, n is non-negative integer. RM  is L-finitely 

generated if RM  have a finitely generated L-dense submodule. Or equivalently, there exist a finitely generated 

submodule N of M. such that / .M N L∈  
 
A right R-module M is L-finitely presented if there exist an exact sequence 0 0,K F M→ → → → where F is 
finitely generated free and K is L-finitely generated. 
 
A right R-module M is L-n-presented if there exists a sequence 2 2 10 ... 0.n nK F F F M−→ → → → → → →  

where iF 𝐹𝐹𝑖𝑖  is finitely generated free and nK is L-finitely generated. 
 
Remark 2.1: 

(1) If M is finitely generated (or finitely presented, n-presented, L-n-presented). 
(2) Every L-finitely presented module (L-n-presented module) is finitely generated (n-1-presented). 
(3) If L= {0}, then M is L-finitely generated (L-finitely presented L-n-presented) if and only if M is finitely 

generated (finitely presented, n-presented). 
(4) If L=R-MOD, then M is L-finitely presented (L-n-presented) if and only if M is finitely generated                  

(n-1-presented). 
 
Definition 2.2: Let RM  is a right R-module, L is a class of module, n is non-negative integer. 

A right R-module N is L-n-M-flat (n-M-flat) if every homomorphism K N→ factor through a module of add RM , 

where K is L-n-presented (n-presented). Equivalently there is RL addM∈ and homomorphism g,h, such that the 
diagram  

 
 
COMMENTS 
A right R-module N is L-n-Mittag-Leffler if every homomorphism K N→ factor through a n-presented module, 
where K is L-n-presented. 
 
Remark 2.2: 
(1) By definitions, the class of L-n-M-flat right R-module is closed under direct summands and finite direct sums. L-n-

M-flat R-module are always n-M-flat.  
(2) If .FN addM∈  then N is L-n-M-flat. The converse holds if N is L-n-finitely presented. 

(3) A L-n- RR -flat right R-module is L-n-Mittag-Leffler module. 
(4) Let L={0}, then every right R-module is L-n-Mittag-Leffler module. 
 
It is clear that L-n-Mittag-Leffler are generalizations of both R-Mittag-Leffler module [9] and τ -M-flat module [12]. 
The following proposition is also easy to verify. 
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Proposition 2.1: Let N be a right R-module. Then: 
(1) N is L-n-M-flat if and only if N is both n-M-flat and L-n-Mittag-Leffler for a n-presented M; 
(2) N is n-presented if and only if N is both L-n-presented module and L-n-Mittag-Leffler. 
(3) Every right R-module is L-n-Mittag-Leffler if and only if every L-n-present module is n-presented. 
 
Proof: by definitions, it is clearly. 
In [12] a right R-module epimorphism :f L N→ is called n-pure if for any n-presented P 

( ) ( )* : , ,R Rf Hom P L Hom P N→ is epic. In [12], aright R-module epomorphism :f L N→ is Pureτ −  if for 

any τ − finitely presented P, ( ) ( )* : , ,R Rf Hom P L Hom P N→  is epic. For L-n-presented module, we gave the 
definition of L-n-pure. 
 
Definition 2.3: an R-module epimorphism :f L N→ is called L-n-pure if for any L-n-presented P, 

( ) ( )* : , ,R Rf Hom P L Hom P N→  is epic. 
It is clear that an L-n-pure epimorphism is n-pure. But a n-pure epimorphism is not L-n-pure. We have the following 
proposition. 
 
Proposition 2.2: Let L be a class. The following are equivalent for a right R-module N. 
(1) N is L-n-Mittag-Leffler; 
(2) Every n-pure epimorphism :f L N→  is L-n-pure; 
(3) There exists a L-n-pure epimorphism :f L N→ with L is L-n-Mittag-Leffler; 
(4) Given a n-pure epimorphism :f L C→ and homeomorphisms :h N C→ , : P Nα → with P L-n-presented, 

there exists a homomorphism : P Lβ → such that .f hβ α=  
 
Proof: 
(1) (2) :⇒  Let :f L N→ be a n-pure epimorphism. Assume that P is L-n-presented, and α is any homomorphism. 
By (1) there exist a n-presented right R-module H, :g P H→ and :h H N→ such that hgα = Since f is n-pure, 

and H is n-presented, there exists : H Lβ → such that .f hβ =  So ( ).f gα β=  and (2) follows. 

(2) (3) :⇒  Let f: L → L, for L is L-n-Mittag-Leffler. It is clear that f is n-pure epimorphism. By (2) f is L-n-pure 
epimorphism, and (3) follows. 
(1) (3) :⇒  is easy to verify. 
(2) (4) :⇒  is clear. 
(4) (2) :⇒  holds by letting C N= and h be the identity map. 

Corollary 2.1: Let L be a class of module. The following are equivalent for a right R-module N: 

(1) N is L-n- RR -flat; 
(2) Every epimorphism :f L N→  is L-n-pure; 

(3) There exists a L-n-pure epimorphism :f L N→  with L is L-n- RR -flat; 

(4) Given a n-pure epimorphism :f L C→ and homeomorphisms :h N C→ , : P Nα → with P L-n-presented, 
there exists a homomorphism : P Lβ → such that .f hβ α=  

In [12], every pure submodule of τ -flat R-module isτ -flat. In [12], if M is pure projective, then pure submodule of    
τ -M-flat R-module is τ -M-flat. For L-n-M-flat, we consider same question. 
 
Proposition 2.3: Let M be a right R-module. Then: 
(1) Every pure submodule of a L-n-M-flat right R-module is L-n-M-flat whenever RM  is pure-projective. 
(2) Every pure submodule of a L-n-Mittag-Leffler right R-module is L-n-Mittag-Leffler 
 
Proof: (1) Let N be a pure submodule of a L-n-M-flat right R-module and :f L N→ the inclusion.  
For any L-n-presented right R-module P and any homomorphism :f P N→ , since L is L-n-M-flat, there are 

RQ addM∈ and :g P Q→ and :h Q L→ such that jf hg= . In [12] there is pure epimorphism : H Lϕ →  
with H pure-projective, and we have the pullback diagram of j and ϕ : 
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0 0K H L N→ → → →                                

  
                                                                      α             ϕ               =  

0 0iN L L Nπϕ→ → → →  
 
Since Q is pure-projective and  is pure, there exists :I Q H→ such that .h Iϕ= Therefore we have 

0.Ig hg jfπϕ π π= = =  which implies ( ) .Ig P K⊆  Since P is finitely generated, so is ( )Ig P . Note that j and 

ϕ  are pure, so λ  is pure. On the other hand, since H is pure-projective, we get a homomorphism :k H K→  such 

that ( ) ( )kIg p Ig p= for all p P∈ . Let ,kIβ α=  then ( )hom , ,R Q Nβ ∈ and for all p P∈ ,  

( ) ( ) ( ) ( ) ( ) ( )lg lg .g p j k p p h gp jf p f pβ α ϕ= = = = = .then .f gβ=  Thus N is L-n-M-flat (2) can be 
proven in a similar way as in the proof of (1). 
 
Let A, B and M be right R-modules with ( )RS End M= . There is a natural homomorphism  

( ) ( ) ( ), : , , ,A B R s R RHom M A Hom B M Hom B Aσ σ= ⊗ →  

defined via ( )( ) ( )( )f g b f g bσ ⊗ =  for ( ) ( ), , , , .R Rf Hom M A g Hom B M b B∈ ∈ ∈  

It is easy to check that ,A Bσ  is an isomorphism if ( )RA add M∈ or ( ).RB add M∈  
 
In [11], N is -flat R-module is -flat if and only if ,p Nσ  is isomorphism for any τ − finitely presented P. For L-n-M-
flat, we consider same question. 
 
Proposition 2.4: Let M and A be right R-module, L be a class of modules, the following are equivalent: 
(1) A is L-n-M-flat. 
(2) ,A Bσ  is epimorphism, for any L-n- finitely presented right R-module B. 
 
Proof: ( ) ( )1 2 :⇒  Let B be any L-n-presented right R-module, ( ), .Rf Hom B A∈  By (1), f factors through a right 

R-module nM , i.e., there exist : ng B M→  and : nh M A→ such that .f hg=  Let : n
i M Mπ →  be the ith 

projection, i=1, 2, , n. Put i if hλ=  and .i ig gπ=  It is easy to check that ( ), 1
,n

A B i ii
f f gσ

=
= ⊗∑  i.e., ,A Bσ  is 

an epimorphism. 

( ) ( )2 1 :⇒  Let B be L-n-presented right R-module and ( ), .Rf Hom B A∈ By (2), there exist ( ),i Rf Hom B A∈  

and ( ), ,i Rg Hom B M∈ 1,2,...,i n= such that ( ), 1
.n

A B i ii
f f gσ

=
= ⊗∑ Define : ng B M→ via 

( ) ( ) ( ) ( )( )1 2, ,... ng b g b g b g b= for b B∈ and : nh M A→ via ( ) ( )1 2 1
, ,... n

n i ii
h m m m f m

=
=∑ for 

.im M∈  Then f hg= and (1) follows. 
 
Proposition 2.5: Let M be a projective right R-module and 0 0A B C→ → → →  a right R-module exact 
sequence, L be a class of module. If A and C are L-n-M-flat, then B is L-n-M-flat. 
 
Proof: Let N be a L-n-presented right R-module, ( ), .RU Hom N M= Since M is projective right R-module, so we 
have the following commutative diagram: 

( ) ( ) ( ), , ,R R RHom M N U Hom M B U Hom M C U⊗ → ⊗ → ⊗  

                                          ,A Nσ                                       ,B Nσ                                       ,C Nσ  

( ) ( ) ( ), , ,R R RHom N A U Hom N B U Hom N C U⊗ → ⊗ → ⊗  
 
Since A and C are L-n-M-flat, , ,,A N c Nσ σ are epimorphism by Proposition 2.4, thus ,c Nσ is epimorphism, and so B is 
L-n-M-flat. 
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3. RELATIVE COHERENT MODULE 
 
Definition 3.1: Let RM  be a right R-module, L be a class of module, n is a nonnegative integer, ( ).RS End M=  

s M is called L-n-coherent if RM  is L-(n+1)-presented and ( ),s RHom A M  is a finitely generated left S-module for 
any L-(n+1)-presented right R-module A. 
 
Remark 3.1: By [2, lemma3], s M  is L-n-coherent if and only if RM  is L-(n+1)-presented and any L-(n+1)-

presented right R-module has an ( )Radd M − preenvelope. So it follows that s M  is L-n-coherent if and only if RM  
is L-(n+1)-presented and any L-(n+1)-presented right R-module has an L-n-M-flat-preenvelope. 
 
For a L-n-coherent module, it is a promotion about n-coherent ring. Then we discusses relationship of these concepts. 
 
Lemma 3.1: Let M and A be right R-module, n is non-negative integer, then: 
(1) ( ),s RHom A M n∈ − copres s M , for any n-presented right R-module A, .n N∈  

(2) ( ),s RHom A M n∈ − copres ,s S for any .RA n presM∈ −  
 
Proof: (1) the conclusion is hold by Angeleri-Hugel (2003,lemma4), when n=1. 
Assuming the truth of the result for some n, where .n k≤  If RA is (k+1)-presented, then 0 0,nK R A→ → → →  
where K is (k+1)-presented, so  

( ) ( ) ( )0 , , , 0.n
R R RHom A M Hom R M Hom K M→ → → → ( ) ( ), 1s RMHom A M k∈ + − copres s M by 

( ),n n
RHom R M M≅ and ( ),R sHom K M k copres M∈ − (2) can be proven in a similar way as in the proof 

of (1). 
 
Lemma 3.2: S is left coherent ring if and only if any ( )1 RA n presM∈ + −  has a RaddM preenvelope. 

Proof: let ( )1 ,sA n copres S∈ + − then there is an exact sequence 0 10 ... 0nn nnA S S S V→ → → → → → →  
where V is finitely copresented. So V is n-presented. By S is left n-coherent ring, and V is (n+1)-presented, A is finitely 
generated. i.e. S is left n-coherent ring if and only if any module of ( )1 sn copres S+ − is finitely generated. 

( ) ( ), 1R sHom B M n copres S∈ + −  by any ( )1 ,R RB n presM∈ + − so ( ),RHom B M  is finitely generated. 

By [2, lemma3] B has an RaddM preenvelope. 
 
Lemma 3.3: If s M  is n-coherent module, then every (n+1)-presented module has an RaddM preenvelope. If RM  is 

(n+1)-presented right R-module and s M  is n-presented left S-module, vice versa. 
 
Proof: let RA is (n+1)-presented, then ( ) ( ), 1 sR

Hom A M n copres M∈ + − by lemma 2.1, so there is an exact 

sequence ( ) 1 20 , ... 0.nnn n
RHom A M M M M L→ → → → → → → for .in N∈ L cogen∈ .s M By 

assuming that L is n-presented, so L is (n+1)-presented. Hence ( ).RHom A M is finitely generated, thus A has an 

RaddM  preenvelope. 
 
Otherwise, if RM  is (n+1)-presented, and every (n+1)-presented module has an RaddM  preenvelope, then any 

( )1 RA n presM∈ + −  has an RaddM  preenvelope. S is left n-coherent ring by lemma3.2. So s M is n-coherent 

module by s M is n-presented. 
 
Proposition 3.1: Let RM  is (n+1)-presented right R-module and s M is n-presented left S-module. If s M is L-n-

coherent module, then s M is n-coherent module. s M is n-coherent module if and only if S is left n-coherent ring. 
 
Proof: it holds by lemma3.2 and lemma 3.3. 
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Remark 2.2: let L={0}, then s M  is L-n-coherent if and only if s M  is n-coherent and RM  is n-presented. 
 
For L-n-coherent, it can be describe by L-n-flat and L-n-Mittag-Leffler, so we have the following theorem. 
 
Theorem 3.3: Let RM  be (n+1)-presented. ( ).RS End M=  Then the following are equivalent: 

(1) s M is L-n-coherent; 
(2) Every right R-module has a L-n-flat preenvelope; 
(3) All direct products of copies of RM  are L-n-M-flat; 

(4) All direct products of L-n-M-flat right R-module are -n-M-flat; 
(5) s M  is n-coherent and all direct products of copies of RM  are L-n-Mittag-Leffler 

(6) s M is n-coherent and all direct products of iN with i RN AddM∈  are L-n-Mittag-Leffler 

(7) The right R-module ( ),RHom P M  is L-n-M-flat for any projective left S-module P. 
 
Proof: ( ) ( ) ( ) ( )2 1 , 4 3 ,⇒ ⇒  and ( ) ( )6 5⇒  are trivial. 

( ) ( )3 1 :⇒ Let A be a L-n-presented right R-module. For every index set I, we have the following commutative 
diagram: 

( ) ( ), ,I
R s RHom M M Hom A M⊗  

                                ϕ                                      
,IM A

σ  

               ( )( ) ( ), ,
I

R RHom A M Hom A Mθ→  
                   

Where θ  is an isomorphism, and ϕ  is a canonical homomorphism. By Proposition 2.4, 
,IM A

σ  is epic since IM  is L-

n-M-flat. Thus ϕ  is epic, and hence ( ),RHom A M  is a finitely generated left S-module by [13, lemma 13.1, P41]. 
 

( ) ( )1 4 :⇒  let iM  be a family of L-n-M-flat right R-modules and N any -finitely presented right R-module. For 

any homomorphism : ,i i if F M→ since iM  is L-n-M-flat, there exist i RF addM∈ and homomorphism 

: ,i ig N F→ : ,i i ih F M→ such that : .i i if h g  Since N has an RaddM -preenvelope :f N F→  by (1), there is 

: ,i ik F F→ such that :i i ig k f M→ Hence ( ) .i i if h k f= It follows that the sequence  

( ) ( ), , 0R i R iHom F M Hom N M→ →  is exact. Thus we get the exact sequence ( )( ) ( )( ), , 0
I I

R i R iHom F M Hom N M→ →   
 
Note that ( )( ) ( ), ,

i

I I
R i RHom F M Hom F M≅  and ( )( ) ( ), , .

i

I I
R i RHom N M Hom N M≅ , thus every homomorphism from N to 

i

IM factors through F. So (4) follows. 

( ) ( )1 5 :⇒  let N be any right R-module. By [lemma5.3.12] there is a cardinal number αΝ such that for any R-

homomorphism :f N L→ with L L-n-M-flat. There is a pure submodule Q of L such that ( )Card Q Nα≤  and 

( )f N Q⊆ . Q is L-n-m-flat by Proposition 2.3, and so N has a L-n-M-flat preenvelope by (5) and [14, Proposition 
6.2.1]. 

( ) ( )1 5 :⇒  s M is coherent by Proposition 3.1.By the preceding proof, thus all the products of copies of RM  are L-

n-M-flat, and hence L-n-Mittag-Leffler by Proposition 1.1 since RM is (n+1)-presented. 
 

( ) ( )5 1 :⇒  We shall show that any L-n-presented right R-module has an RaddM -preenvelope . Let RN  be L-n- 

presented. Then the product map : Jf N M→ induced by all maps in ( ),RJ Hom N M= is a ( )prod M -

preenvelope. Thus, by (5), there exist a n-presented right R-module L and homomorphism : ,g N L→ : Jh L M→  
 
 



Wei Han*, RuiTong Li / Relative Coherent Modules Over Endomorphism Rings / IRJPA- 6(12), Dec.-2016. 

© 2016, RJPA. All Rights Reserved                                                                                                                                                                       475 

 
such that .f hg=  Note that L has an RaddM -preenvelope : Rk L M→ since s M is coherent. It is easy to verity 

that : nkg N M→ is an RaddM -preenvelope of N. 

( ) ( )5 6 :⇒  Let { }i Ri I
N addM

∈
⊆ with I an index set. Then 𝑁𝑁𝑖𝑖  is a direct summand of ( )iJM for some index set 

𝐽𝐽𝑖𝑖 . Since 𝑀𝑀(𝐽𝐽𝑖𝑖)  is a pure submodule of iJM by [7, lemma 1(1)], iN is pure in iJM . Thus ii I
N

∈∏ is a pure 

submodule of iJ
i I

M
∈∏ by [7, lemma1 (2)]. So the result follows from Proposition 2.3(2). 

( ) ( )7 3 :⇒  is obvious by choosing P to be IS for any index set I. 
 

By specializing Theorem 3.3 to the case L={0}, we have the following corollary. 
 
Corollary 3.4: Let RM  be n-presented. ( ).RS End M=  Then the following are equivalent: 

(1) s M  is n-coherent; 
(2) Every right R-module has an n-M-flat-preenvelope. 
(3) All direct products of copies of RM are n-M-flat. 
(4) All direct products of n-M-flat right R-module are n-M-flat. 
(5) The right R-module  
(6) ( ),sHom P M is n-M-flat for any projective left S-module P. 
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