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ABSTRACT 
In this paper, we have studied various properties of a (4, 1) structure manifold and its invariant submanifold. Under 
two different assumptions, the nature of induced structure ψ has also been discussed. 
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1. INTRODUCTION 
 
               Let Vm be a C∞  m-dimensional Riemannian manifold imbedded in a C∞  n-dimensional Riemannian manifold 

Mn, where m<n. The imbedding being denoted by  
  : m nf V M→  
 
 Let B be the mapping induced by f  i.e. B=df  
  ( ) ( ):df T V T M→  
 
 Let T (V, M) be the set of all vectors tangent to the submanifold f(V). It is well known that  
  ( ) ( ): ,B T V T V M→  
 
 Is an isomorphism. The set of all vectors normal to ( )f V  forms a vector bundle over ( )f V , which we shall 

denote by ( ),N V M . We call ( ),N V M  the normal bundle of mV . The vector bundle induced by f from 

( ),N V M  is denoted by ( )N V . We denote by ( ) ( ): ,C N V N V M→ the natural isomorphism and by 

( )r
s Vη  the space of all C∞  tensor fields of type ( ),r s  associated with N (V). Thus ( ) ( )0 0

0 0V Vζ η= is the 

space of all C∞  functions defined on mV  while an element of ( )1
0 Vη  is a C∞  vector field normal to mV  and 

an element of ( )1
0 Vζ  is a C∞  vector field tangential to mV . 

 
 Let X  and Y  be vector fields defined along ( )f V  and ,X Y   be the local extensions of X  and Y  respectively. 

Then ,X Y  
   is a vector field tangential to Mn and its restriction ( ),X Y f V  

 

to ( )f V  is determined 

independently of the choice of these local extension X  and Y . Thus ,X Y  
 is defined as 
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(1.1) ( ), ,X Y X Y f V   =   

    

 
Since B is an isomorphism 

(1.2) [ ] [ ], ,BX BY B X Y=  for all ( )1
0,X Y Vζ∈  

 
 Let G  be the Riemannain metric tensor of Mn, we define g and g* on Vm and N (V) respectively as  
(1.3) ( ) ( )1 2 1 2, , ,g X X G BX BX f=   and 

(1.4) ( ) ( )*
1 2 1 2, ,g N N G CN CN=   

 
 For all ( )1

1 2 0,X X Vζ∈  and ( )1
1 2 0,N N Vη∈  

 
 It can be verified that g and *g  are the induced metrics on Vm and N (V) respectively. 
 
 Let ∇  be the Riemannian connection determined by G  in Mn, then ∇  induces a connection ∇  in ( )f V  

defined by 
(1.5) ( )X XY Y f V∇ =∇



   

 where X  and Y  are arbitrary C∞  vector fields defined along ( )f V  and tangential to ( )f V . 
 
 Let us suppose that nM  is a (4, 1) structure manifold with structure tensor ψ  of type (1, 1) satisfying 

(1.6) 4 0ψ ψ+ =   
 

 Let L  and M  be the complementary distributions corresponding to the projection operators 

(1.7) 3 3,l m Iψ ψ= − = +

   
 where I denotes the identity operator.  
 
 From (1.6) and (1.7), we have 
(1.8) (a) l m I+ =



 (b) 2l l=    (c) 2m m= 
 

(d) 0l m m l= = 

   
 

 Let lD  and 
mD  be the subspaces inherited by complementary projection operators l and m respectively. 

 We define 
  ( ){ }: , 0l pD X T V lX X mX= ∈ = =  

  ( ){ }: , 0m pD X T V mX X lX= ∈ = =
 

 
 Thus       ( )p l mT V D D= +

 
 
 Also { }: 0 mKer l X lX D= = =  

  { }: 0 lKer m X mX D= = =  at each point p  of ( )f V . 
 

2. INVARIANT SUBMANIFOLD OF ( )4,1  STRUCTURE MANIFOLD 
 

 We call mV  to be invariant submanifold of nM  if the tangent space ( )( )pT f V  of ( )f V  is invariant by 

the linear mapping ψ  at each point p of ( )f V . Thus 

(2.1) BX B Xψ ψ= , for all ( )1
0 ,X Vζ∈ , and ψ  being a (1,1) tensor field in mV . 
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 Theorem 2.1: Let N  and N be the Nijenhuis tensors determined by ψ and ψ  in nM and mV respectively, 

then 
(2.2) ( ) ( ), , ,N BX BY BN X Y=  for all ( )1

0,X Y Vζ∈  
 
 Proof: We have, by using (1.2) and (2.1)  
(2.3) ( ) [ ] [ ] [ ] [ ]2, , , , ,N BX BY BX BY BX BY BX BY BX BYψ ψ ψ ψ ψ ψ ψ= + − −

        

                                        [ ] [ ] [ ] [ ]2, , , ,B X B Y B X Y B X BY BX B Yψ ψ ψ ψ ψ ψ ψ= + − −    

                                        [ ] [ ] [ ] [ ]2, , , ,B X Y B X Y B X Y B X Yψ ψ ψ ψ ψ ψ ψ= + − −   

                                        
[ ] [ ] [ ]{ [ ]}2, , , ,B X Y X Y X Y X Yψ ψ ψ ψ ψ ψ ψ= + − −  

                                        
3BX B Xψ= +  

 
3. DISTRIBUTION M NEVER BEING TANGENTIAL TO ( )f V   
 
 Theorem 3.1: if the distribution M  is never tangential to ( )f V , then 

(3.1) ( ) 0m BX =    for all  ( )1
0X Vζ∈  

 and the induced structure ψ  on mV  satisfies 

(3.2) 3 Iψ = −  
 
 Proof: if possible ( ) 0m BX ≠

. From (2.1) we get  

(3.3) 3 3 ;BX B Xψ ψ=  from (1.7) and (3.3) 
 ( ) ( )3m BX I BXψ= + 

 

 3BX B Xψ= +  

(3.4) ( ) 3m BX B X Xψ = + 

 
 
 This relation shows that ( )m BX

 is tangential to ( )f V  which contradicts the hypothesis. Thus ( )m BX

= 0.  
 
               Using this result in (3.4) and remembering that B is an isomorphism, we get 
(3.5) 3 Iψ = −  
 
 Theorem 3.2: Let M  be never tangential to ( )f V , then  

(3.6) ( ), 0
m
N BX BY =




 
 
 Proof: We have 

(3.7) ( ) [ ] [ ] [ ] [ ]2, , , , ,
m
N BX BY m BX mBY m BX BY m mBX BY m BX mBY= + − −




        

  
 Using (1.2), (1.8) (c) and (3.1), we get (3.6). 
 
 Theorem 3.3: Let M  be never tangential to ( )f V , then  

(3.8) ( ), 0
l
N BX BY =




 
 
 Proof: We have 
(3.9) ( ) [ ]2, , , , ,

l
N BX BY l BX l BY l BX BY l l BX BY l BX l BY     = + − −     

      
  

  
 Using (1.2), (1.8) (a), (b) and (3.1) in (3.9); we get (3.8) 
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 Theorem 3.4: Let M  be never tangential to ( )f V . Define  

(3.10) ( ) ( ) ( ) ( ) ( ), , , , ,H X Y N X Y N mX Y N X mY N mX mY= − − +              

   

 
 
 For all ( )1

0,X Y Mζ∈  , then 

(3.11)    ( ) ( ), ,H BX BY BN X Y=

 
 
 Proof: Using ,X BX Y BY= =   and (2.2), (3.1) in (3.10).  we get (3.11). 
 
4. DISTRIBUTION M ALWAYS BEING TANGENTIAL TO ( )f V

 
 
 Theorem 4.1: Let M  be always tangential to ( )f V , then  

(4.1) (a) ( )m BX Bm X=   (b)  ( )l BX Bl X=

 
 
 Proof: from (3.4), We get (4.1) (a). Also 
(4.2) 3l ψ= −  

 3lX Xψ= −  

 (4.3) 3BlX B Xψ= −  
 
 Using (2.1) in (4.3) 
(4.4) ( )3 ,BlX BX l BXψ= − = 

 
 which is (4.1) (b). 
 
 Theorem 4.2: Let M be always tangential to ( )f V , then l and m satisfy 
(4.5) (a)  l +m =I (b) lm= ml =0 (c) l2=l (d) m2 =m. 
 
 Proof: Using (1.8) and (4.1) We get the results. 
 
 Theorem 4.3: If M  is always tangential to ( )f V , then  

(4.6) 4 0ψ ψ+ =  
 
 Proof: From (2.1) 
(4.7) 4 4BX B Xψ ψ=  
 
 Using (1.6) in (4.7) 
        4BX B Xψ ψ− =  

       4B X B Xψ ψ− =  

 Or    4 0ψ ψ+ =   which is (4.6) 
 
 Theorem 4.4: If M Is always tangential to ( )f V  then as in (3.10) 

(4.8) ( ) ( ), ,H BX BY BH X Y=

 
 
 Proof: from (3.10) we get 
(4.9) ( ) ( ) ( ) ( ) ( ), , , , ,H BX BY N BX BY N mBX BY N BX mBY N mBX mBY= − − +    

   

 
  
 Using (4.1) (a) and (2.2) in (4.9) we get (4.8). 
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