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ABSTRACT 
In this paper we discuss the product of q-EP matrices are discussed. 
 
Keywords: Moore-Penrose inverse, q-EP matrix, product of q-EP. 
 
 
INTRODUCTION 
 
Through we shall deal with nxn quaternion matrices [7]. Let A* denote the conjugate transpose of A. Let A- be the 
generalized inverse of A satisfying AA A−  and z be the Moore-Penrose of A[6]. Any matrix nXnA H∈ is called q-EP 
(2) if R(A)=R(A*) and his called q-EPr, if A is q-EP and rk(A)=r, where N(A), R(A) and rk(A) denote the null space, 
range space and rank of A respectively. It is well known that sum and sum of parallel summable q-EP matrices are q-
EP [3]. In general the product of symmetric, Hermitian, normal and EP respectively. Similarly, the product of q-EP 
matrices need not be q-EP. For instance 
 

Let A =  
1 1

1 2
i j k

i j k
+ + + 

 − − − 
 

      B =  
3 1 2 3 4

1 2 3 4 4
i j k

i j k
+ + + 

 − − − 
 

 
A is q-EP and B is q-EP. 

       AB = 
13 4 2 5 6 7 4

5 7 9 11 18 2 4
j k i j k

i j k i k
− − + + + 

 − − − + + 
 is not q- EP 

 
Theorem 1.1: Let A1 and An (n>a) be q-EPr matrices and let A = A1A2A3……An. Then the following statements are 
equivalent: 

(i) A is q-EPr 
(ii) R(A1) = R(An) and rk(A)=r 
(iii) R(A1

*) = R(An
*)  and rk(A) = r 

 
Proof:   
(i)⇔  (ii): Since A1 and An are q-EPr, therefore R(A1)  = R(A1

*) and R(An) = R(An
*). Let  A=A1A2A3……An. 
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Since A1, A2, A3,……….An are q-EP 
    ⇒A=A1A2A3………An 
 
R(A) ⊆R(A1) and rk(A) = rk(A1) 
   ⇒R(A) = R(A1). 
 
Also    A* = (An

*) (An-1
*)………..(A1

*) 
   ⇒R(A*)⊆R(An

*) and rk(A) = rk(An) = r 
   ⇒ rk(A*) = rk(An

*) = r 
 
Therefore, 
 R(A*) = R(An

*) 
 
Now, 
 A is q-EPr ⇔ R(A) = R(A*) and rk(A) = r  (By definition q-EP[2]) 
                                ⇔ R(A1) = R(An

*)         
      ⇔ R(An

*) = R(An) 
     ⇔ R(A1) = R(An) and rk(A) = r 
(ii) ⇔ (iii): 

R(A1) = R(An) 
⇔ R(A1

*) = R(An)*= R(An
*) 

⇔ R(A1
*) = R(An

*) 
Hence the theorem 

 
Corollary 1.2: Let A and B are q-EPr matrices. Then AB is q-EPr ⇔ rk(AB) = r and R(A) = R(B) 
 
Proof: Proof follows from theorem (1.1) for the product of two q-EPr matrices A and B. 
 
Remarks 1.3: In the corollary both the conditions that rk(AB) = r and R(A) = R(B) are essential for the product of two 
q-EPr matrices to be q-EPr. This can be seen in the following example. 
 
Example 1.4: 

Let A =
1

0
k

k
 
 − 

, B = 
1

0
k

k
− − 
 
 

⇒AB = 
2

1
k

k
− − 
 − 

 

A is q-EP and B is q-EP., then AB is q-EP ⇔ rk(AB) = 2 and R(A) = R(B) 
 
Example 1.5: 

Let A = 
1 1

1 2
i j k

i j k
+ + + 

 − − − 
 

      B = 
3 1 2 3 4

1 2 3 4 4
i j k

i j k
+ + + 

 − − − 
 

A is q-EP and B is q-EP. R(A) ≠ R(B). Then 

     AB = 
1 34 2 5 6 7 5

5 7 9 11 18 2 4
j k i j k

i j k i k
− − + + + 

 − − − + + 
 is not q-EP 

AB is not q-EP and rk(AB) = 2 
 
Theorem 1.6: Let rk(AB) = rk(B)=r1 and rk(BA) =  rk(A) = r2. If AB, B are q-EPr1 and A is q-EPr2 then BA is q-EPr2 
 
Proof: Since rk(BA) = rk(A) = r2, It is enough to show that N(BA) = N((BA)*) to prove BA is q-EPr2 
 
Now,   N(A) ⊆N(BA) and rk(BA) = rk(A) 
 ⇒N(A) = N(BA) 
 
Also, N(B) ⊆N(AB) and rk(AB) = rk(B) 
 ⇒N(B) = N(AB) 
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Now N(BA)  = N(A) 

  = N(A*) 
 ⊆N(B*A*) 
  = N(AB) 
  = N(B) 
  = N(B*) 
 ⊆N(A*B*) 
  = N(BA)*) 

       N(BA) s⊆N(BA)*) 
 
Further rk(BA) = rk(BA)* 
 ⇒N(BA) = N((BA)*)   
 
Thus, BA is q-EPr2 
 
Hence the theorem. 
 
Lemma 1.7: A, B ∈Hnxn be of rank r. 

(i) rk(AA*) = rk(A*A) 

(ii) rk(AB) = rk(B) – dim * *( ) ( )N A N B −   

 If A and B are q-EPr matrices and AB has rank r, then BA has rank r. 
 
Proof: By theorem [1], rk(AB) = rk(B) – dim(N(A)   N(B*)⊥  
 
Since          rk(AB) = rk(B) = r 

     N(A)  N(B*)⊥ = {0} ⇔ N(A)  N(B) ⊥ ={0}. [Since B is q-EPr] 
⇒N(A) ⊥

 N(B) ={0} 
⇒N(A*)⊥  N(B) = {0}   [Since A is q-EPr] 
 

Now, rk(BA) = rk(B)(A) 
  = rk(A) – dim (N(B)  N(A*)⊥ ) 
  = rk(A) – 0 
  = rk(A) 

 
That is rk(BA) = r 
 
Hence the lemma. 
 
Example 1.8: 

A =
1

0
i j

i j
+ 

 − − 
, B= 

0
0
k

k
 
 − 

 

A and B are q-EPr matrices 
∴ rk(A) = r, rk(B) = r 

AB = 
0

j i k
j i

− 
 − 

 

∴ rk(AB) = r 
 

Then BA = 
1 0j

k j i
− + 
 − − + 

 

         rk(BA) = r 
 
Theorem 1.9: If A, B and AB are q-EPr matrices then BA is q-EPr. 
 
Proof: Since A, B are q-EPr matrices and rk(AB) = r, by lemma(1.7), rk(BA) = r. Now the theorem follows from 
theorem (1.6) for r1=r2=r. 
 
Hence the theorem. 
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Example 1.10: 

A = 

0
0 0
0 0

k
k

j

j

 
 
− 

 
 −

 

B = 

0
0 0
0 0

k
k

j

j

 −
 
 
 
 

−
 

 
A and B are q-EPr Matrices 

AB = 

2 0 0
0 1
0 1

i
i

− 
 − − 
 − 

 

 
And AB is q-EPr matrices 

BA = 

2 0 0
0 1
0 1

i
i

− 
 − − 
 − 

 

 
So, if A, B and AB are Q-EP matrices then BA is q-EPr 
 
Corollary 1.9: Let A, B be q-EPr matrices. Then the following statements are equivalent 

(i) AB is qEPr 
(ii) (AB) †  is q-EPr 
(iii) A † B †  is q-EPr 
(iv) B † A †  is q-EPr 
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