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ABSTRACT

In this paper we introduce the notion of symmetric skew 4-reverse derivation of prime ring and we consider R be a
non commutative 2,3- torsion free ring , I be a non zero two sided ideal of R. Suppose « is an anti automorphism of R,
and D:R X R X R X R - R be a symmetric skew 4-reverse derivation associated with the anti automorphism a. If fis
trace of D such that [f(x), a(x)] = 0, forall x € I, then D = 0.

Key words: prime ring, Reverse Derivation, Symmetric Skew 3- derivation, Symmetric Skew 4- reverse derivation and
Anti automorphism.

INTRODUCTION

Bresar and Vukman [3] have introduced the notion of a reverse derivations and Samman and Alyamani [9] have studied
some properties of semi prime rings with reverse derivations. AjdaFosner [1] have introduced the notation of
symmetric skew 3- derivations of prime or semi prime rings and proved that under certain conditions a prime ring with
a non zero symmetric skew 3-derivation has to be commutative. The study of centralizing and commuting mappings on
prime rings was initiated by the result of Posner [8] which states that the existence of a non zero centralizing derivation
on a prime ring implies that the ring has to be commutative. Vukman [10, 11] investigated symmetric bi derivation on
prime and semi prime rings in connection with centralizing mappings. C.JayaSubba Reddy et al. [5] has studied prime
ring with symmetric skew 3- reverse derivations. Faiza Shujat and Abuzaid Ansari [4] has studied symmetric skew
4-derivations on prime rings. In this paper we proved that under certain conditions a prime ring with a non zero
symmetric skew 4-reverse derivation has to be commutative.

PRELIMINARIES

Throughout the paper, R will represent a ring with a center Z and «a an anti automorphism of R. Let n > 2 be an
integer. A ring R is said to be n-torsion free if for x € R,nx = 0 implies = 0. For all x,y € R the symbol [x, y] will
denote the commutatorxy — yx. Recall that a ring R is semi prime if xRx = 0 ,implies that x = 0.An additive map
d: R — R is called derivation if d(xy) = d(x)y + xd(y), for all x,y € R. An additive map d: R — R is called reverse
derivation if d(xy) = d(y)x + yd(x), for all x,y € R and it is called a skew derivation (« -derivation) of R associated
with the automorphism or anti automorphism «a if d(xy) = d(x)y + a(x)d(y), for all x,y € R, and it is called a skew
reverse derivation (a — reverse derivation ) of R associated with auto morphism or anti automorphism « if
d(xy) = xd(y) + a(y)d(x), forall x,y € R.

Before starting our main theorem, let us gives some basic definations and well known results which we will need in our
further investigation.

Let D be a symmetric 3-additive map of R, then obviously
D(—x,y,z) = —D(x,y,z),forall x,y,z € R Q)

Namely, for all y,z € R, the map D(.,y,2): R — R is endo morphissm of the additive group of R.

The map f: R — R defined by f(x) = D(x, x,x,x), x € R is called trace of D
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Note that f is not additive on R. But for all x,y € R, we
fO+x)=f)+fx)+3D(,x,x) +3D(x,y,y)

Recall also that by (1), f is odd function

More precisely, for all x,y, z,u,v,w € R, we have
D(xu,y,z) = xD(u,y,z) + a(u)D(x,y, 2),
D(x,yv,z) = yD(x,v,z) + a(v)D(x,y, z),
D(x,y,zw) = zD(u,y,w) + a(w)D(x,y, z).
Of course, if D is symmetric, then the above three relations are equivalent to each other.

MAIN RESULT

Theorem: Let R be a 2,3 —torsion free non commutative prime ring and I be a nonzero ideal of R.Suppose « is an anti
automorphism of R and D: R* - R is a symmetric skew 4- reverse derivation associated with a. If f is trace of D such
that [f(x),a(x)] = 0, forall x € I, then D = 0.

Proof: Let [f(x),a(x)] =0, forall x € I. (2)

Linearization of (2) yields that

[f(x+y)alx+y)]=0

[f(x) +4D(x,x,x,¥) + 6D(x,x,y,y) + 4D(x,y,y,¥) + f(¥), a(x)] = 0

[f (), a()] + 4[D(x, x,x,y), a(x)] + 6[D(x,x,y,¥), a()] + 4[D(x,y, v, ), ()] + [f ), a()] + [f (x), a(¥)]
+4[D(x,x,x,y),a()] + 6[D(x,x,y,y), a()] + 4[D(x,y,y, ), a)] + [f), a(y)] = 0, forall x € I. 3)

From (2) & (3), we get
4[D(x,x,x,¥), a(x)] + 6[D(x,x,y,¥), a(x)] + 4[D(x,y,y,¥), a(x)] + [f ), a(x)] + [f (x), a ()]
+4[D(x,x,x,y),a(y)] + 6[D(x,x,y,y),a(y)] + 4[D(x,y,y,y),a(y)] = 0, forall x € I. 4)

Replacing y by -y in (4) we find
—4[D(x,x,x,}’),a(x)] + 6[D(x,x,y'J/)'a(x)] - 4[D(x,y.y'J’)'0-’(x)] + [f(J’)'a(x)] - [f(x); a(y)]
+4[D(x,x,x,y),a(y)] — 6[D(x,x,y,v),a(y)] + 4[D(x,y,y,y),a(y)] = 0, forall x € I. (5)

Comparing (4) and (5) and using 2-torsion freeness of R we get
4[D(x, x,x,v), a(x)] + 4[D(x,y,v,y), a(x)] + [f (x),a(y)] + 6[D(x,x,y,y),a(y)] = 0,forall x € I. (6)

Substitute y + z for y in (6) and use (6) to get
4[D(x, %, %,y +z),a(x)] +4[D(x,y+ z,y+z,y+ z),a(x)] + [f(x),a(y + 2)] + 6[D(x,x,y + 2,y + z),a(y + z)]
=0

4[D(x,x,x,¥), a(x)] + 4[D(x,x,x,y), a(x)] + 4[D(x,y,y,¥), a(x)] + 4[D(x,y,y,2), a(x)] + 4[D(x,y,z,¥), a(x)]
+ 4[D(x,y,2,2),a(x)] + 4[D(x,z,y,y), a(x)] + 4[D(x, 2, v, 2z), a(x)] + 4[D(x, z, z,y), a(x)]
+4[D(x,z,2,2), a(x)] + [f (x), a()] + [f (x), a(2)] + 6[D(x,x,y,¥), a(y)]
+6[D(x,x,y,2),a(y)] + 6[D(x,x,2,y),a(y)] + 6[D(x,x,2,2),a(y)] + 6[D(x,x,y,y),a(z)]
+6[D(x,x,v,2),a(z)] + 6[D(x,x,2,y),a(z)] + 6[D(x,x,2,2),a(z)] =0

12[D(x, x, x,v), a(x)] + 12[D(x,z,y,y), a(x)] + [D(x, x,y,z), a(y)] + 6[D(x, x, 2, 2), a(y)]
+6[D(x,x,y,y),a(z)] + 12[D(x,x,y,2),a(2)] = 0, forall x,y,z € I @)

Replacing z in - z in (7) and compare with (7) we obtain
—12[D(x, x,x,y), a(x)] + 12[D(x, z,y,y), a(x)] + 12[D(x,x,y,2), a(y)] — 6[D(x,x,2,2), a(y)]
+6[D(x,x,y,v),a(2)] —12[D(x,x,y,2),a(z)] =0

2(12[D(x,2,y,y), a(x)] + 12[D(x, x,y, 2), a(y)] + 6[D(x, x,y,¥), a(2)]) = 0

Using of two torsion free ring we have
12[D(x,z,y,y), a(x)] + 12[D(x, x,y,z),a(y)] + 6[D(x,x,y,y),a(z)] = 0,forall x,y,z € I. (8)

Substitute y + u for y in (8) and use (8) we get
12[D(x,z,y + w,y + w), a(x)] + 12[D(x,x,y + u,2),a(y + w)] + 6[D(x,x,y + u,y + u),a(z)] = 0.
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12[D(x,z,v,y), a(x)] + 12[D(x, z, y,u), a(x)] + 12[D(x, z,u, y), a(x)] + 12[D(x, z,u, u), a(x)]
+ 12[D(x,x,y,z),a(y)] + 12[D(x, x,u, 2), a(y)] + 12[D(x,x, v, 2), a(u)]

+ 12[D(x, x,u, 2),a(w)] + 6[D(x,x,y,y), a(z)] + 6[D(x,x,y,u), a(z)] + 6[D(x, x,u,y), a(z)]

+ 6[D(x,x,u,u),a(z)] = 0.

24[D(x,z,y,u), a(x)] +12[D(x, x, v, z), a(u)] + 12[D (x, x,u, z), a(y)] + 12[D(x, x, y,u), a(z)] = 0,
forall x,y,z € I.

Since R is 2 and 3-torsion free and replacing y, u by x in (9), we have

24[D(x,z,x,x), a(x)] +12[D(x, x,x,z), a(x)] + 12[D(x, x,x,z), a(x)] + 12[D(x, x, x, x), a(z)] = 0.
48[D(x,x,x,2), a(x)] + 12[D(x, x,x,x), a(z)] = 0.

4[D(x,x, x,2), a(x)] + [f(x),a(z)] = 0, forall x,z € I.

Again replaced z by yz in (10) and using (10) we obtain
4[D(x,x,x,y2), a(x)] + [f (x), a(yz)] = 0

4[yD(x,x,x,z) + a(z)D(x,x,x,z),a(x)] + [f (x), a(z2)a(y)] =0

4y[D(x,x,x,2), a(x)] + 4]y, a(x)]1D(x, x, x, z) + 4a(z)[D(x, x, x, z), a(x)] + 4[a(z), a(x)|D(x, x, x, Z)
+[f (), a(@]aly) + a@[f (x),a(y)] =0

a(z)(4[D(x,x,x,2), a(x)] + [f(x), a(y)] + 4y[D(x, x, x, z), a(x)]
+ 4y, a(x)]1D(x,x, x, z)4[a(2), a(x)]1D (x, x,x, z) + [f (x), a(2)]a(y) = 0

4y[D(x, x, x,2), a(x)] + 4[y, a(x)1D(x, x, x, z) + 4[a(2), a(x)]1D(x, x,x, z) + [f (x), a(2)]a(y) = 0,
forall x,y,z € I.

Substitute x for z in (11) and view of (2) we find
4]y, a(x)]f(x) =0, forall x,y € I.

Using 2- torsion freeness of R we obtain
[y, a(x)]f(x) =0, forall x,y € 1.(13)

Substitute zy for y to get
[zy,a()]f (x) =0

[z, a()]yf(x) + z[y, a()]f (x) = 0]

[z, a(x)]yf(x) =0, forall x,y € I.

Primeness of R yields that [z, a(x)] = 0 or f(x) = 0,forallx e InZ(R),z € I.
Next we will show that f(x) = 0, forall x € I.

LetzeInZ(R) and x € I\Z(R).

Thenx + z,x —z € I /Z(R) and we have

gr%c +2)=f(2)+4D(x,x,x,2) + 4D(x,2,2,2z) + 6D(x,x, 2, Z)

fx+2z)=f(2) —4D(x,x,x,2) —4D(x,2,2,2z) + 6D(x,x,2,2)

Comparing (15) & (16) and using 2- torsion free condition, we get
f(z)+6D(x,x,2z,z) = 0.

©)

(10)

(11)

(12)

(14)

(15)

(16)

a7

On suitable linearization and using (17) we arrive at f(x) = 0, for all x € I. Hence we have D(x,y,z w) = 0, for all

x,y,z,w € I.

Substitute xr for x forall x € I, r € R to get

D(xr,y,z,w) =0

xD(r,y,z,w) + a(r)D(x,y,z,w) =0

xD(r,y,z,w) =0

This implies that ID(r,y,z,w) = 0,forall y,z,w € I, r €R.
© 2016, RIPA. All Rights Reserved
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Since R is prime we obtain D(r,y,z,w) = 0, forall y,z,w € I, r € R.

Repeating this process until we get D(r, s, t,p) € R.

Hence D = 0.
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