ABSTRACT

In the literature one can find several examples of a matrix group as well as matrix ring. However examples of a matrix field are generally not found. We provide some examples of matrix fields of finite as well as infinite order. In addition this article provides a technique to obtain finite matrix fields of order p for every positive prime p.

MSC2010: 12Exx, 12E20.

Key-Words: Algebra, binary operation, matrix group, matrix ring, matrix field, Galois field.

INTRODUCTION

A non empty set R together with two binary operations ‘$+$’ and ‘\cdot’ is called a ring if

1. $(R, +)$ is an Abelian group.
2. (R, \cdot) is a semigroup.
3. $a(b + c) = ab + ac$ and $(b + c)a = ba + ca$, $\forall a, b, c \in R$.

If in addition

4. $a.b = b.a$, $\forall a, b \in R$

A ring R having this property is known as a commutative ring.

5. \exists an element 1 in R such that

 $1.a = a.1 = a$, $\forall a \in R$

 1 is called the multiplicative identity of R.

6. for every non-zero element b in R \exists an element c in R such that $b \cdot c = 1$

then R is known as a field.

In the literature of abstract (modern) algebra ([1], [2], [3], [4], [5]) it is not very common to find examples of a field of matrices. The purpose of this article is to provide few examples of a field of matrices.

Condition (6) asserts that in a field R the product of any two non-zero elements is never zero. However in the case of a ring R one may find two non-zero elements b and c in R such that $b \cdot c = 0$. A ring R having this property is known as a ring with zero divisors. The ring $M = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in K \right\}$ where K denotes the set of all rational (real or complex) numbers, is an example of a ring with zero divisors under the ordinary addition and multiplication of matrices.

It is well known that the ring of all square matrices of order 2 is a non- commutative ring with zero-divisors. Due to this it does not form a field and one does not generally think about matrix field. However we shall provide some examples of matrix fields in the next sections.

Corresponding Author: S. K. PANDEY

Dept of Mathematics, Sardar Patel University of Police, Security and Criminal Justice, Daijar, Jodhpur, (Raj.), India.
This Ring M contains several matrix fields. All the examples of infinite matrix field given in the next section are subsets of the above ring M.

SOME EXAMPLES OF MATRIX FIELD OF INFINITE ORDER

Example 1: Let $F = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : a \in K \right\}$. It is easy to see that F is a ring under usual addition and multiplication of matrices. $I = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is the multiplicative identity of this ring. It is a commutative ring and $\forall A = \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} \in F$ with $a \neq 0$ we can find $B = \begin{pmatrix} 1 \\ a \\ 0 \\ 1/a \end{pmatrix} \in F$ such that $AB = I$. Therefore F is a field with respect to usual addition and multiplication of matrices.

Let Q, R and C denote the field of rational, real and complex numbers respectively.

Let $F_1 = \left\{ \begin{pmatrix} a \\ 0 \\ a \end{pmatrix} : a \in Q \right\}$.

$F_2 = \left\{ \begin{pmatrix} a \\ 0 \\ a \end{pmatrix} : a \in R \right\}$ and

$F_3 = \left\{ \begin{pmatrix} a \\ 0 \\ a \end{pmatrix} : a \in C \right\}$

then F_2 is an extension of F_1 and F_3 is an extension of F_2.

It is known from ring theory that every ring R has a centre $Z(R)$. If R is an T-algebra where T is a field then $Z(R)$ contains a copy of the field T. One may conclude that field F given in this example is the centre of ring M given above. However it may be noted that the following two fields are not the centre of M but both are subsets of M.

Example 2: Let $F = \left\{ \begin{pmatrix} a \\ a \\ a \end{pmatrix} : a \in K \right\}$. One can easily verify that F is a ring with respect to addition and multiplication of matrices. $I = \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$ is the multiplicative identity of this ring. It is a commutative ring and $\forall A = \begin{pmatrix} a \\ 1 \\ a \\ 1 \\ 1/a \end{pmatrix} \in F$ with $a \neq 0$ we can find $B = \begin{pmatrix} 1/4a \\ 1 \\ 1 \\ 4a \\ 4a \end{pmatrix} \in F$ such that $AB = I$. Therefore F is a field with respect to usual addition and multiplication of matrices.

Example 3: Let $F = \left\{ \begin{pmatrix} a \\ 0 \\ 0 \\ a \end{pmatrix} : a \in K \right\}$. It is a ring with respect to addition and multiplication of matrices. $I = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ is the multiplicative identity of this ring. It is a commutative ring and $\forall A = \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} \in F$ with
Let p be a prime number. Then $Z_p = \{0,1,2,3,4,5...p-1\}$ is a field under addition and multiplication modulo p. Using this field we can obtain different matrix fields of order p for every positive prime p. We shall consider only few different matrix fields of prime order. These fields provide matrix representations for Galois field of prime order. Let $A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$ and $B = \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix}$ are any two 2×2 matrices defined over Z_p then the sum of A and B is defined as $A + B = (A + B) \mod p = \begin{pmatrix} (a_1 + b_1) \mod p & (a_2 + b_2) \mod p \\ (a_3 + b_3) \mod p & (a_4 + b_4) \mod p \end{pmatrix}$.

Similarly we can define the product of A and B. In the following examples we shall consider these operations for matrix addition and multiplication respectively.

Example 1: Let $F = \{a \in Z_2 : a \in \{0,1\}\}$. Then F is a finite field of order two with respect to addition and multiplication of matrices modulo 2. If we replace Z_2 by Z_3, then we will get a matrix field of order three. Similarly we can find a finite matrix field of higher order.

Example 2: If we take $F = \{a \in Z_2 : a \in \{0,1\}\}$ then we will get a matrix field of order two. By replacing Z_2 with Z_3 we shall get a matrix field of order three. Similarly we can get a matrix field of order five, seven and eleven etc..

Example 3: By taking $F = \{a \in Z_3 : a \in \{0,1,2\}\}$ we can get a matrix field of order three. If we replace Z_3 by Z_4 then we will get a finite matrix field of order five. The identity element of this field will be given by $I = \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix}$.

Similarly if we replace Z_3 by Z_p in the above examples then we shall get finite matrix fields of order p. In the same way we can get a finite matrix field of order $p(\neq 2)$ from example 3. Thus this article provides a technique to obtain matrix representations for a finite field of prime order. One may find several such representations but all such fields are algebraically equivalent for a given prime p.

REFERENCES

[Source of Support: Nil, Conflict of interest: None Declared]