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ABSTRACT 
In the literature one can find several examples of a matrix group as well as matrix ring. However examples of a matrix 
field are generally not found. We provide some examples of matrix fields of finite as well as infinite order. In addition 
this article provides a technique to obtain finite matrix fields of order p for every positive prime p .  
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INTRODUCTION 
 
 A non empty set R together with two binary operations ‘+ ’ and ‘ ⋅ ’ is called a ring if 

(1) ( )+,R  is an Abelian group. 

(2) ( ).,R  is a semigroup. 

(3) ( ) cabacba ... +=+  and ( ) acabacb ... +=+ , Rcba ∈∀ ,, . 
 
 If in addition 

(4) Rbaabba ∈∀= ,,..  
A ring R having this property is known as a commutative ring. 

(5) ∃ an element 1in R such that 
        Raaaa ∈∀== ,1..1  
        1 is called the multiplicative identity of R . 

(6) for every non-zero element b in R ∃ an element c in R such that 1=⋅ cb  
then R is known as a field.  
 
In the literature of abstract (modern) algebra ([1], [2], [3], [4], [5]) it is not very common to find examples of a field of 
matrices. The purpose of this article is to provide few examples of a field of matrices. 
 
Condition (6) asserts that in a field R the product of any two non-zero elements is never zero. However in the case of 
a ring R one may find two non-zero elements b and c in R such that 0=⋅ cb . A ring R having this property is 

known as a ring with zero divisors. The ring 








∈







= Kdcba

dc
ba

M ,,,: where K denotes the set of all rational 

(real or complex) numbers, is an example of a ring with zero divisors under the ordinary addition and multiplication of 
matrices.  
 
It is well known that the ring of all square matrices of order 2 is a non- commutative ring with zero-divisors. Due to this 
it does not form a field and one does not generally think about matrix field. However we shall provide some examples 
of matrix fields in the next sections.  
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This Ring M contains several matrix fields. All the examples of infinite matrix field given in the next section are 
subsets of the above ring M . 
  
SOME EXAMPLES OF MATRIX FIELD OF INFINITE ORDER 
 

Example 1: Let








∈







= Ka

a
a

F :
0

0
. It is easy to see that F is a ring under usual addition and multiplication of 

matrices. 







=

10
01

I is the multiplicative identity of this ring. It is a commutative ring and F
a

a
A ∈








=∀

0
0

with 

0≠a we can find F

a

aB ∈
















= 10

01

such that IAB = . Therefore F is a field with respect to usual addition and 

multiplication of matrices. 
 
 
Let Q , R and C denote the field of rational, real and complex numbers respectively.  
 

Let








∈







= Qa

a
a

F :
0

0
1 ,  

   








∈







= Ra

a
a

F :
0

0
2   

and  

   








∈







= Ca

a
a

F :
0

0
3  

then 2F is an extension of 1F  and 3F  is an extension of 2F . 
 
It is known from ring theory that every ring R has a centre ( )RZ . If R is anT -algebra whereT is a field then ( )RZ  
contains a copy of the fieldT . One may conclude that field F given in this example is the centre of ring M given 
above. However it may be noted that the following two fields are not the centre of M but both are subsets of M . 
 

Example 2: Let








∈







= Ka

aa
aa

F : . One can easily verify that F is a ring with respect to addition and 

multiplication of matrices. 

















=

2
1

2
1

2
1

2
1

I is the multiplicative identity of this ring. It is a commutative ring and 

F
aa
aa

A ∈







=∀ with 0≠a we can find F

aa

aaB ∈
















=

4
1

4
1

4
1

4
1

such that IAB = . Therefore F is a field with 

respect to usual addition and multiplication of matrices. 
 

Example 3: Let








∈







= Ka

a
F :

00
0

. It is a ring with respect to addition and multiplication of matrices. 









=

00
01

I is the multiplicative identity of this ring. It is a commutative ring and F
a

A ∈







=∀

00
0

with  
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0,a ≠  we can find FaB ∈












=

00

01
such that IAB = . Therefore F is a field with respect to usual addition and 

multiplication of matrices. 
 
SOME EXAMPLES OF MATRIX FIELD OF FINITE ORDER 
 
Let p be a prime number. Then { }1...5,4,3,2,1,0 −= pZ p is a field under addition and multiplication modulo p . 
Using this field we can obtain different matrix fields of order p for every positive prime p . We shall consider only few 
different matrix fields of prime order. These fields provide matrix representations for Galois field of prime order. Let 









=

43

21

aa
aa

A  and 







=

43

21

bb
bb

B  are any two 22× matrices defined over pZ then the sum of A  and B is 

defined as 
( ) ( )
( ) ( ) 








++
++

=+=+
pbapba
pbapba

pBABA
modmod
modmod

mod)(
4433

2211 .  

 
Similarly we can define the product of A and B . In the following examples we shall consider these operations for 
matrix addition and multiplication respectively. 
 

Example 1: Let








∈







= 2:

0
0

Za
a

a
F . Then F is a finite field of order two with respect to addition and 

multiplication of matrices modulo 2 . If we replace 2Z by 3Z , then we will get a matrix field of order three. Similarly 
we can find a finite matrix field of higher order. 
 

Example 2: If we take








∈







= 2:

00
0

Za
a

F  then we will get a matrix field of order two. By replacing 2Z with 

3Z  we shall get a matrix field of order three. Similarly we can get a matrix field of order five, seven and eleven etc.. 
 

Example 3: By taking








∈







= 3: Za

aa
aa

F  we can get a matrix field of order three. If we replace 3Z  by 

5Z then we will get a finite matrix field of order five. The identity element of this field will be given by 







=

33
33

I . 

 
Similarly if we replace 2Z by pZ in the above examples then we shall get finite matrix fields of order p . In the same 

way we can get a finite matrix field of order ( )2≠p from example 3. Thus this article provides a technique to obtain 
matrix representations for a finite field of prime order. One may find several such representations but all such fields are 
algebraically equivalent for a given prime p .   
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