
International Research Journal of Pure Algebra-5(10), 2015, 182-190 

 Available online through www.rjpa.info  ISSN 2248–9037  

International Research Journal of Pure Algebra-Vol.-5(10), Oct. – 2015                                                                                                     182 

 
THE PRODUCT SPAN OF SUM SPAN OF A SUBSET  

OF A COMPLETELY BOUNDED ARTEX SPACE OVER A BI-MONOID 
 

K. MUTHUKUMARAN* 
 

Controller of Examinations and Associate Professor, 
P. G. and Research Department of Mathematics, Saraswathi Narayanan College,  

Perungudi Madurai, Tamil Nadu, India-625022. 
 

(Received On: 25-09-15; Revised & Accepted On: 12-10-15) 
 
 

ABSTRACT  
When Sum Combination is introduced, it was introduced only for a finite subset of an Artex Space A over a                     
bi-monoid M. Now the sum span for any subset of a completely bounded Artex space over a bi-monoid is defined.    
When Product Combination is introduced, it was introduced only for a finite subset of an Artex Space over a bi-
monoid. Now the Product span for any subset of a completely bounded Artex space over a bi-monoid is defined. The 
product span of sum span of a subset of a completely bounded artex space over a bi-monoid is defined. Propositions 
were found and proved. 
 
Keywords: Bi-monoids, Artex Spaces over bi-monoids, Completely Bounded Artex Spaces over bi-monoids, Sum 
Combination, Sum Span, Product  Combination, Product  Combination, Product Span of Sum Span. 
 
  
I. INTRODUCTION 
 
The algebraic system Bi-semi-group is more general to the algebraic system ring or an associative ring. Artex Spaces 
over Bi-monoids were introduced. As a development of Artex Spaces over Bi-monoids, SubArtex spaces of Artex 
spaces over bi-monoids were introduced.. From the definition of a SubArtex space, it is clear that not every subset of an 
Artex space over a bi-monoid is a SubArtex space. Some propositions which qualify subsets to become SubArtex 
Spaces were found and proved. Completely Bounded Artex Spaces over bi-monoids were introduced. It contains the 
least and greatest elements namely 0 and 1. When Sum Combination was introduced, it was in troduced only for a finite 
subset of an Artex Space A over a bi-monoid M. Now the sum span for any subset of a completely bounded Artex 
space over a bi-monoid is defined. When Product Combination was introduced, it was introduced only for a finite 
subset of an Artex Space over a bi-monoid. Now the Product span for any subset of a completely bounded Artex space 
over a bi-monoid is defined. Now  sum combination, sum span, product combination and  product span together give a 
new SubArtex Space  namely  product span of sum span of a subset of a completely bounded Artex space over a  bi-
monoid. It will be useful for the development of the theory of Artex Spaces over bi-monoids 
 
II. PRELIMINARIES 

 
2.1. Semi-group: A non-empty set S together with a binary operation. is called a Semi-group if for all a, b, c ϵ S,            
a.(b . c) = (a.b).c  
 
2.2. Monoid: A non-empty set N together with a binary operation . is called a monoid if 

(i) (i) for all a, b, c ϵ N,  a.(b . c) = (a.b).c   and 
(ii) there exists an element denoted by e in N such that a.e = a = e.a, for all a ϵ N.  

 
The element e is called the identity element of the monoid N. 
 
2.3. Relation: Let S be a non-empty set. Any subset of S×S is called a relation in S.   
                                 
If R is a relation in S, then R is a subset of S×S.  
 
If (a,b) belongs to the relation R, then we can express this by aRb or by a ≤ b.  
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Note: A relation may be denoted by ≤  
 
2.4. Partial Ordering: A relation ≤ on a set P is called a partial order relation or a partial ordering in P if  

(i) a ≤ a, for all aϵP                       ie   ≤ is reflexive, 
(ii) a ≤ b and b ≤ a implies a = b    ie   ≤   is anti-symmetric, and  
(iii) a ≤ b and b ≤ c implies a ≤ c    ie   ≤   is  transitive. 

 
2.5. Partially Ordered Set (POSET): If ≤ is a partial ordering in P, then the ordered pair (P, ≤) is called a Partially 
Ordered Set or simply a POSET.     
 
2.6. Lattice: A lattice is a partially ordered set (L, ≤ ) in which every pair of elements a, b ϵ L has a greatest lower 
bound and a least upper bound. 
 
The greatest lower bound of a and b is denoted by aɅb and the least upper bound of a and b is denoted by aV b  
 
2.7. Lattice as an Algebraic System: A lattice is an algebraic system (L,Ʌ,V) with two binary operations Ʌ and V on 
L which are both commutative, associative and satisfy the absorption laws namely aɅ(aVb) = a and aV(aɅb) = a, for 
all a, b ϵ L 
 
The operations Ʌ and V are called cap and cup respectively, or sometimes meet and join respectively. 
 
2.8. Properties: We have the following properties in a lattice (L, Ʌ,V ) 
1. a Ʌ a = a    1’.a V a = a                                      (Idempotent Law) 
2. a Ʌ b = b Ʌ a                 2’.a V b = b V a                               (Commutative Law) 
3. (a Ʌ b) Ʌ c = a Ʌ ( b Ʌ c)  3’.(a V b) V c = a V( b V c)            (Associative Law) 
4. a Ʌ (a V b) = a                4’.a V (a Ʌ b) = a, for all a, b, c ϵ L (Absorption Law) 
 
2.9. Complete Lattice: A lattice is called a complete lattice if each of its nonempty subsets has a least upper bound and 
a greatest lower bound. 
 
Every finite lattice is a complete lattice and every complete lattice must have a least element and a greatest element. 
 
The least and the greatest elements, if they exist, are called the bounds or units of the lattice and are denoted by 0 and 1 
respectively. 
 
2.10. Bounded Lattice: A lattice which has both elements 0 and 1 is called a bounded lattice. A bounded lattice is 
denoted by (L, Ʌ, V, 0, 1) 
 
The bounds 0 and 1 of a lattice (L, Ʌ, V) satisfy the following identities.  
For any aϵL, a V 0 = a a Ʌ 1 = a a V 1 = 1 a Ʌ 0 = 0 
 
2.10.1. Example: For any set S, the lattice (P(S), ⊆) is a bounded lattice. Here for each A, B ϵ P(S), the least upper 
bound of A and B is A∪B and the greatest lower bound of A and B is A∩B. The bounds in this lattice are φ, the empty 
set and S, the universal set. 
 
2.11. Complemented Lattice: Let (L, Ʌ,  V, 0, 1) be a bounded lattice. An element a’ϵL is called a complement of an 
element aϵL if a Ʌ a’ = 0, a V a’ = 1. A bounded lattice (L, Ʌ,  V, 0, 1) is said to be a complemented lattice if every 
element of L has at least one complement. A complemented lattice is denoted by (L, Ʌ,  V,’ 0, 1).  
 
2.11.1. Example: For any set S, the lattice (P(S), ⊆) is a Complemented lattice. 
 
For each A, B ϵ P(S), the least upper bound of A and B is A∪B and the greatest lower bound of A and B is A∩B. 
 
The bounds in this lattice are φ, the empty set and S, the universal set. 
 
Here for any A ϵ P(S), the complement of A in P(S) is S-A 
 
2.12. Doubly Closed Space: A non-empty set D together with two binary operations denoted by + and . is called a 
Doubly Closed Space if (i) a.(b+c) = a.b + a.c and (ii) (a+b).c = a.c + b.c, for all a, b, c ϵ D 
 
A Doubly closed space is denoted by (D, +,  .) 
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Note-1: The axioms (i) a.(b+c) = a.b + a.c and (ii) (a+b).c = a.c + b.c, for all a, b, c ϵ D are called the distributive 
properties of the Doubly Closed Space. 
 
Note-2: The operations + and . need not be the usual addition and usual multiplication respectively. 
 
2.12.1. Example:  Let N be the set of all natural numbers. 
  
Then (N, +,  .), where + is the usual addition and . is the usual multiplication, is a Doubly closed space. 
 
Similarly (Z, + , .), (Q, + , .), (R, + , .) and (C, + , .) are all Doubly closed spaces. 
 
2.12.2. Example: (Z, +, –), where + is the usual addition and   – is the usual subtraction, is not a Doubly closed space. 
 
2.13. Bi-semi-group: A Doubly closed space (S, +, .) is called a Bi-semi-group if + and . are associative in D. 
 
2.13.1. Example  2.2.1: (N, + , .), (Z, + , .), (Q, + , .), (R, + , .), and (C, + , .), where + is the usual addition  and  . is the 
usual multiplication, are all Bi-semi-groups. 
 
2.14. Bi-monoid: A Bi-semi-group (M, +, .) is called a Bi-monoid if there exist elements denoted by 0 and 1 in S such 
that a+0=a=0+a, for all aϵM  and  a.1=a=1.a, for all aϵM . 
 
The element 0 is called the identity element of M with respect to the binary operation + and the element 1 is called the 
identity element of M with respect to the binary operation. 
 
2.14.1. Example:  Let W = {0, 1, 2, 3,…}.Then (W, +, .), where + is the usual addition and . is the usual multiplication, 
is a Bi-monoid. 
 
2.14.2. Example:  Let Q’= Q+ ∪{0}, where Q+ is the set of all positive rational numbers. Then (Q’, +, .) is a bi-monoid. 
 
2.14.3. Example:  R’= R+ ∪{0}, where R+ is the set of all positive real numbers. Then (R’, +, .) is a bi-monoid. 
 
2.14.4. Example: (Z, + , .), (Q, + , .), (R, + , .), and (C, + , .), where + is the usual addition  and . is the usual 
multiplication, are all Bi-monoids. 
 
2.15. Artex Space Over a Bi-monoid: Let (M, +, .) be a bi-monoid with the  identity elements 0 and 1 with respect to 
+ and . respectively. A non-empty set A together with two binary operations ^ and v is said to be an Artex Space Over 
the Bi-monoid (M, +, .) if 

1. (A, Ʌ , V) is a lattice and 
2. for each mϵM, mǂ0, and aϵA, there exists an element ma ϵ A satisfying the following conditions: 

(i) m(a Ʌ b) = ma Ʌ mb 
(ii) m(a V b) = ma V mb 
(iii) ma Ʌ na ≤ (m +n)a     and   ma V na ≤ (m + n)a   
(iv) (mn)a = m(na), for all m, nϵM, mǂ0, nǂ0, and a, bϵA              
(v) 1.a = a, for all a ϵ A.  

Here, ≤ is the partial order relation corresponding to the lattice (A, Ʌ, V) .The multiplication ma is called a bi-monoid 
multiplication with an artex element or simply bi-monoid multiplication in A.  
 
2.15.1. Example:  Let W = {0, 1, 2, 3,…}. 
 
Then (W, +, .) is a bi-monoid , where + and . are the usual addition and multiplication respectively. 
 
Let Z be the set of all integers 
 
Then (Z, ≤) is a lattice in which Ʌ and V are defined by a Ʌ b = minimum of {a, b} and a V b = maximum of {a, b}, for 
all a, b ϵ Z. 
 
Clearly for each mϵW, mǂ0, and for each aϵZ, maϵZ. 
Also,   

(i)    m(a Ʌ b) = ma Ʌ mb 
(ii)   m(a V b) = ma V mb 
(iii)  ma Ʌ na ≤ (m +n)a      and  ma V na ≤ (m + n)a 
(iv)  (mn)a = m(na) 
(v)   1.a = a , for all m,nϵW, m ǂ 0, n ǂ 0 and a,bϵZ 
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Therefore, Z is an Artex Space Over the Bi-monoid (W, +, .) 
 
2.15.2. Example:  As defined in Example 2.15.1, Q, the set of all rational numbers is an Artex space over W 
 
2.15.3. Example: As defined in Example 2.15.1, R, the set of all real numbers is an Artex space over W. 
 
2.15.4. Example:  Let Q’= Q+ ∪ {0}, where Q+ is the set of all positive rational numbers.  
 
Then (Q’, + , . ) is a bi-monoid. Now as defined in Example 2.15.1, Q, the set of all rational numbers is an Artex space 
over Q’ 
 
2.15.5. Example: R’= R+ ∪ {0}, where R+ is the set of all positive real numbers. Then (R’, +, .) is a bi-monoid. 
 
As defined in Example 2.15.1, R, the set of all real numbers is an Artex space over R’ 
 
2.16. Properties 
 
2.16.1. Properties: We have the following properties in a lattice ( L , Ʌ,V) 
1. a Ʌ a = a    1’.a V a = a 
2. a Ʌ b = b Ʌ a                 2’.a V b = b V a 
3. (a Ʌ b) Ʌ c = a Ʌ (b Ʌ c)  3’.(a V b) V c = a V( b V c) 
4. a Ʌ (a V b) = a   4’.a V (a Ʌ b) = a, for all a, b, c ϵ L 
 
Therefore, we have the following properties in an Artex Space A over a bi-monoid M. 

(i) m(a Ʌ a) = ma       (i)’.m(a V a) = ma 
(ii) (m(a Ʌ b) =m(b Ʌ a)      (ii)’.m(a V b) = m(b V a) 
(iii) m((a Ʌ b )Ʌ c)=m(a Ʌ( b Ʌ c))           (iii)’.m((a V b) V c) = m(a V( b V c))      
(iv) m(a Ʌ (a V b)) = ma      (iv)’.m(a V (a Ʌ b)) = ma,                                                                                
       for all mϵM, m ǂ 0 and a, b, c ϵ A 

 
2.17. SubArtex Space: Let (A, Ʌ, V) be an Artex space over a bi-monoid. (M, +, .). Let S be a nonempty subset of A. 
Then S is said to be a SubArtex Space of A if (S, Ʌ, V) itself is an Artex Space over M. 
 
2.17.1. Example: As defined in Example 2.15.1, Z is an Artex Space over W = {0, 1, 2, 3,…..} and W is a subset of Z. 
Also W itself is an Artex space over W under the operations defined in Z. Therefore, W is a SubArtex space of Z.      
 
2.18. Complete Artex Space over a bi-monoid: An Artex space A over a bi- monoid M is said to be a Complete Artex 
Space over M if as a lattice, A is a complete lattice that is each nonempty subset of A has a least upper bound and a 
greatest lower bound. 
 
2.18.1. Remark: Every Complete Artex space must have a least element and a greatest element.  
 
The least and the greatest elements, if they exist, are called the bounds or units of the Artex space and are denoted by    
0 and 1 respectively. 
 
2.19. Lower Bounded Artex Space over a bi-monoid: An Artex space A over a bi-monoid M is said to be a Lower 
Bounded Artex Space over  M if  as a lattice, A has the least element 0.                                                                          
 
2.20. Upper Bounded Artex Space over a bi-monoid: An Artex space A over a bi-monoid M is said to be an Upper 
Bounded Artex Space over M if  as a lattice, A has the greatest element 1. 
 
2.21. Bounded Artex Space over a bi-monoid: An Artex space A over a bi-monoid M is said to be a Bounded Artex 
Space over M if A is both a Lower bounded Artex Space over M and an Upper bounded Artex Space over M. 
 
2.22. Completely Bounded Artex Space over a bi-monoid: A Bounded Artex Space A over a bi-monoid M is said to 
be a Completely Bounded Artex Space over M if  (i) 0.a = 0,  for all a ϵ A (ii) m.0 = 0, for all m ϵ M.  
 
2.22.1. Note: While the least and the greatest elements of the Complemented Artex Space is denoted by 0 and 1, the 
identity elements of the bi-monoid (M, +, .) with respect to addition and multiplication are, if no confusion arises, also 
denoted by 0 and 1 respectively. 
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III. THE SUM SPAN OF A SUBSET OF AN ARTEX SPACE OVER A BI-MONOID 
 
3.1. Sum Combination:   Let (A, Ʌ, V) be an Artex Space over a bi-monoid (M, +, .). Let a1, a2, a3, … . , an ϵ A. Then 
any element of the form m1a1Vm2a2Vm3a3V ……. V mnan, where mi ϵ  M, is called a Sum Combination or Join 
Combination of a1, a2, a3, ……. an. 
 
3.2. The Sum Span of a subset of an Artex Space over a Bi-monoid: Let (A, Ʌ, V) be a Completely Bounded Artex 
Space over a bi-monoid (M, +, .) and W be a  nonempty finite  subset of A. Then the Sum Span of W or Join Span of W 
denoted by S[W] is defined to be the set of all sum combinations of elements of W. That is, if  
W = {a1, a2, a3, ……. an}, then S[W] = {m1a1Vm2a2Vm3a3V …… Vmnan / mi ϵ M}. 
 
3.3. PROPOSITIONS 
 
Proposition 3.3.1:  Let (A, Ʌ,  V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .) and W be a 
nonempty finite subset of A. Then W ⊆ S [W]  
 
Proposition 3.3.2:  Let (A, Ʌ,  V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .). Let W and V be 
any two nonempty finite subsets of A. Then W ⊆ V implies P [W] ⊆ P [V]. 
 
Proposition 3.3.3:  Let (A, Ʌ, V) be a Completely Bounded Artex Space over a bi-monoid (M, +, . ). Let W and V be 
any two nonempty finite subsets of A. Then P [W∪V] = P [W] V P [V] . 
 
3.4. Examples  
 
3.4.1. Example : Let R’ = R+ ∪{0}, where R+ is the set of all positive real numbers and let W = {0,1,2,3,…..} (R’, ≤) is 
a lattice in which Ʌ and V are defined by a Ʌ b = mini {a, b} and   a V b = maxi {a, b}, for all a, b ϵ R’. 
 
Here ma is the usual multiplication of a by m. 
 
Clearly for each m ϵ W, mǂ0, and for each a ϵ R’, ma ϵ R’. 
 
Also, 

(i)     m(a Ʌ b) = ma Ʌ mb          
(ii)    m(a V b) = ma V mb 
(iii)   ma Ʌ na ≤ (m +n)a      and  ma V na ≤ (m + n)a          
(iv)   (mn)a = m(na) , for all m, n ϵ W, mǂ0, nǂ0, and a, b ϵ R’                     
(v)    1.a = a, for all a ϵ R’                                              

Therefore, R’ is an Artex Space Over the bi-monoid (W, +, .)  
 
Generally, if Ʌ 1, Ʌ 2, and  Ʌ 3 are the cap operations of A, B and C respectively and if V1, V2, and V3 are the cup 
operations of A, B and C respectively, then the cap of A×B×C  denoted by Ʌ and the cup of A×B×C denoted by V ar e 
defined                                                                                                     
x Ʌ y =(a1,b1,c1) Ʌ (a2,b2, c2) = (a1 Ʌ1a2 Ʌ1a3 , b1 Ʌ2b2 Ʌ2b3, c1Ʌ3c2 Ʌ3c3 )  and                                               
x V y =(a1,b1,c1) V (a2,b2, c2) = (a1 V1a2 V1a3 , b1 V2b2V2b3, c1V3c2V3c3 )                                                 
 
Here, Ʌ1, Ʌ2, and Ʌ3 denote the same meaning minimum of two elements in R’ and V1, V2, and V3 denote the same 
meaning maximum of two elements in R’. 
 
Therefore, R’3 = R’×R’×R’ is an Artex Space over W, where cap and cup operations are denoted by Ʌ and V 
respectively. 
 
Let  S = { (1,0,0) } and let  T = { (0,1,0) } 
 
Now P [S] = {(m, 0, 0) / mϵR’} and  P [T] = {(0, n, 0) / nϵR’} 
P [S] V P [T] = {(m, 0, 0) / mϵR’} V {(0, n, 0) / nϵR} 
                      = {(m V10 , 0V2n, 0V30)} 

        ={(m,n,0)} (since mV10 = max.{m,0} = m, 0V2n=max.{0,n}=n and 0V30=max.{0,0}=0) 
 

P [S] V P [T] = {(m, n, 0) / m, nϵR’}                                                                                                                                 (i) 
 
Now S ∪ T = {(1, 0, 0), (0, 1,0)} 
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Let m, n ϵ M, mǂ0, nǂ0 
 
Then m(1,0,0) V n(0,1,0) = (m,0,0) V (0,n,0) 
                                         = (m V10, 0 V2 n, V3 0) 

                          = (m, n, 0) (since mV10 = max.{m,0} = m, 0V2n=max.{0,n}=n and 0V30=max.{0,0}=0) 
 

Therefore, P [S∪T] = {(m, n, 0) / m, nϵR’}                                                                                                                      (ii) 
 
From equations (i) and (ii) we have P [S∪T] = P [S] V P [T] 
 
3.4.2. Example: Let S = {(1, 0, 0)} and let  T = {(1,0,0),(0,1,0)} 
 
Then P [S] = {(a, 0, 0) / a ϵ R’} and P [T] = {(a, 0, 0), (0, b, 0) / a, b ϵ R’}  
 
Therefore, P [S] ⊆ P [T].  
 
3.5. THE PRODUCT OF SUBSETS OF AN ARTEX SPACE OVER A BI-MONOID: Let (A, Ʌ,  V) be an Artex 
Space over a bi-monoid (M, +, .). Let S and T be subsets of the Artex Space A. Then the product of S and T denoted by 
S Ʌ T is defined by S Ʌ T = {s Ʌ t / s ϵ S and t ϵ T} 
 
3.6. Product Combination:  Let (A, Ʌ,  V) be a Completely Bounded Artex Space over a bi-monoid (M , + , . ). Let    
a1, a2, a3, ……. an ϵ A. Then  any element of the form m1a1 Ʌ m2a2 Ʌ m3a3 Ʌ ……. Ʌ mnan , where mi ϵ  M, is called a 
Product Combination or Meet Combination of a1, a2, a3, ……. an. 
 
3.7. The Product Span of a Subset of a Completely Bounded Artex Space over a Bi-monoid: Let (A, Ʌ,  V) be a 
Completely Bounded Artex Space over a bi-monoid (M, +, .) and W be a  nonempty finite  subset of A. Then the 
Product Span of W or Meet Span of W denoted by P[W] is defined to be the set of all product combinations of elements 
of W. That is, if W = {a1, a2, a3, ……. an}, then P[W] = {m1a1 Ʌ m2a2 Ʌ m3a3 Ʌ ……. Ʌ mnan / mi ϵ  M}. 
 
3.8. PROPOSITION 
 
Proposition 3.8.1:  Let (A, Ʌ,  V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .). Let W and V be 
any two nonempty finite subsets of A. Then P[W∪V] = P[W] Ʌ P[V] . 
 
3.9. Example: Let R’ = R+ ∪{0}, where R+ is the set of all positive real numbers and let W = {0,1,2,3,…..}(R’, ≤) is a 
lattice in which Ʌ and V are defined by a Ʌ b = mini {a, b} and   a V b = maxi {a, b}, for all a, b ϵ R’. 
 
Here ma is the usual multiplication of a by m. 
 
Clearly for each m ϵ W, mǂ0, and for each a ϵ R’, ma ϵ R’. 
 
Also, 

(i)    m(a Ʌ b) = ma Ʌ mb          
(ii)   m(a V b) = ma V mb 
(iii)  ma Ʌ na ≤ (m +n)a and  ma V na ≤ (m + n)a          
(iv)  (mn)a = m(na), for all m, n ϵ W, mǂ0, nǂ0, and a, b ϵ R’                     
(v)   1.a = a, for all a ϵ R’                                              

Therefore, R’ is an Artex Space Over the bi-monoid (W, +, .)  
 
Generally, if Ʌ 1, Ʌ 2, and  Ʌ 3 are the cap operations of A, B and C respectively and if V1, V2, and V3 are the cup 
operations of A , B and C respectively, then the cap of A×B×C  denoted by Ʌ and the cup of A×B×C denoted by V are 
defined                                                                                                     
x Ʌ y =(a1,b1,c1) Ʌ (a2,b2, c2) = (a1 Ʌ1a2 Ʌ1a3 , b1 Ʌ2b2 Ʌ2b3, c1Ʌ3c2 Ʌ3c3 )  and                                               
x V y =(a1,b1,c1) V (a2,b2, c2) = (a1 V1a2 V1a3 , b1 V2b2V2b3, c1V3c2V3c3 )                                                 
 
Here, Ʌ1, Ʌ2, and Ʌ 3 denote the same meaning minimum of two elements in R’ and V1, V2, and V3 denote the same 
meaning maximum of two elements in R’ 
 
Therefore, R’3 = R’×R’×R’ is an Artex Space over W, where cap and cup operations are denoted by Ʌ and V 
respectively. 
 
Let H = {(1, 0, 0)} and let  T = {(0, 1, 0)} 
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Now P[H] = {(m,0,0) / mϵR’} and  P[T] = {(0,n,0) / nϵR’} 
P[H] Ʌ P[T] = {(m,0,0) / mϵR’} V {(0,n,0) / nϵR’} 
                     = {(m Ʌ 10, 0 Ʌ 2n, 0 Ʌ 30)} 

      =  {(0,0,0)} (since m Ʌ10 = mini.{m,0} = 0, 0 Ʌ2n= mini.{0,n}=0 and 0 Ʌ 30= mini.{0,0}=0) 
 
P[H] Ʌ P[T] = {(0,0,0)}                                                                                                                                                     (i) 
 
Now H ∪ T = {(1, 0, 0), (0, 1, 0)} 
 
Let m, n ϵ M, mǂ0, nǂ0 
 
Then m(1,0,0) Ʌ n(0,1,0) = (m,0,0) Ʌ (0,n,0) 
                                         = (m Ʌ 1 0, 0 Ʌ2 n, Ʌ3 0) 

                          = (0, 0, 0) (since m Ʌ 10 = mini.{m,0} =0, 0 Ʌ 2n= mini.{0,n}=0 and 0 Ʌ 30= mini.{0,0}=0) 
 

Therefore, P[H∪T] = {(0,0,0)}                                                                                                                                         (ii) 
 
From equations (i) and (ii) we have P[H∪T] =  P[H] Ʌ P[T] 
 
IV. THE PRODUCT SPAN OF SUM SPAN OF A SUBSET OF A COMPLETELY BOUNDED ARTEX SPACE 
OVER A BI-MONOID 
 
4.1. The Product Span of Sum Span a Subset of a Completely Bounded Artex Space over a Bi-monoid:  Let       
(A, Ʌ, V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .) and W be a  nonempty subset of A. Then 
the Sum Span of W or Join Span of W denoted by S[W] is defined to be S[W] = {m1a1Vm2a2Vm3a3V …… Vmnan / 
miϵM and ai ϵW}. The Product Span of W or Meet Span of W denoted by P[W] is defined to be P[W] = {m1a1 Ʌ m2a2 
Ʌ m3a3 Ʌ ……. Ʌ mnan / mi ϵ  M and ai ϵW}.  Then P[S[W]] is  Product Span of the Sum span S[W].   
 
4.1.1 Note: Every element x of P[S[W]] is of the following form: 
x = (m11a11Vm12a12V …… Vm1pa1p) Ʌ (m21a21Vm22a22V …… Vm2ka2k) Ʌ ………. Ʌ (mr1ar1Vmr2ar2V….Vmnrqarq), 
where aij ϵ W and mij ϵ M. 
 
4.2. PROPOSITIONS 
 
Proposition: 4.2.1 Let (A, Ʌ,  V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .) and W be a  
nonempty subset of A.  Then S[W] ⊆ P[S[W]]. 
 
Proof: Let (A, Ʌ,  V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .) and W be a  nonempty subset 
of A. 
 
Then S[W] = {m1a1Vm2a2Vm3a3V …… Vmnan / mi ϵ M and ai ϵW}. 
 
Let x ϵ S[W] 
 
Then x = m1a1Vm2a2Vm3a3V …… Vmnan , where miϵM and ai ϵW  
 
Now every element of P[S[W]] is of the form  
(m11a11Vm12a12V …… Vm1pa1p ) Ʌ (m21a21Vm22a22V …… Vm2ka2k ) Ʌ ………. Ʌ (mr1ar1Vmr2ar2V….Vmnrqarq ), 
where aij ϵ W and mij ϵ M. 
 
Take   m11 = m1, m12 = m2,   ….. , m1p = mn  if p = n 
Take   m11 = m1, m12 = m2,   ….. , m1n = mn and m1n+1 = m1n+2 = m1n+3 = 0 if p> n 
Take   m11 = m1, m12 = m2,   ….. , m1p = mp and m1p+1 = mp+1 ….. m1n = mn if p< n 
and  
Take   a11 = a1, a12 = a2,   ….. , a1p = an  if p = n 
Take   a11 = a1, a12 = a2,   ….. , a1n = an and if p> n 
Take   a11 = a1, a12 = a2,   ….. , a1p = ap and a1p+1 = ap+1 ….. a1n = an if p< n 
 
Also take mij = 0, for i ≥2  
 
Then clearly x ϵ P[S[W]] 
Hence, S[W] ⊆ P[S[W]]. 
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Proposition: 4.2.2 Let (A, Ʌ,  V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .) and W be a  
nonempty subset of A.  Then P[S[W]] is a SubArtex space of A. 
 
Proof: Let (A, Ʌ, V) be a Completely Bounded Artex Space over a bi-monoid (M, +, .)  
 
Let W be a nonempty subset of A. 
 
The Sum Span of W denoted by S[W] is defined to be  
S[W] = {m1a1Vm2a2Vm3a3V … Vmnan / mi ϵ M and ai ϵW}.  
 
The Product Span of W denoted by P[W] is defined to be  
P[W] = {m1a1 Ʌ m2a2 Ʌ m3a3 Ʌ…. Ʌ mnan / mi ϵ M and aiϵW}. 
 
Then P[S[W]] is  Product Span of the Sum span S[W].   
 
Claim: P[S[W]] is a SubArtex space of A. 
 
Let x, y ϵ P[S[W]] and m, n ϵ M. 
 
Now every element of P[S[W]] is of the form  
(m11a11Vm12a12V …… Vm1pa1p) Ʌ (m21a21Vm22a22V …… Vm2ka2k) Ʌ ………. Ʌ (mr1ar1Vmr2ar2V….Vmnrqarq), 
where aij ϵ W and mij ϵ M. 
 
Since (A, Ʌ,  V) is a Completely Bounded Artex Space over the bi-monoid (M, +, .), A contains the least and the 
greatest elements namely 0 and 1. 
 
Therefore, mij can necessarily be taken as 0.  
 
Therefore, x and y are the combinations of products and sums of elements of W 
 
Therefore, mx Ʌ ny is the combinations of products and sums of elements of W  and mx V ny is the combinations of 
products and sums of elements of W. 
 
Therefore, mx Ʌ ny ϵ P[S[W]] and mx V nyϵP[S[W]] 
 
Hence, P[S[W]] is a Aub Artex Space of A. 
 
V.  CONCLUSION 
 
Sum Combination, Sum Span, Product Combination, Product Span, Product Span of Sum Span of a subset of a 
Completely Bounded Artex space over a bi-monoid will motivate the researchers.  
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