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ABSTRACT

Let R be a 2-torsion and 3-torsion free semiprime ring. Let D: (.,.): R X R —» Rand B(.,.): R X R — Rbe a symmetric
left bi-derivation and symmetric bi-additive mapping. IfD(d(x),x) = 0 and d(d(x)) = f(x) holds for all x in R,
whered be a trace ofD and f be a trace of B. In this case D = 0.

Key Words: Semiprime ring, Symmetric mapping, Trace, Symmetric bi-derivation, Symmetric bi-additive mapping,
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INTRODUCTION

The concept of a symmetric bi-derivation has been introduced by Gy. Maksa in [2], [3]. A classical result in the theory
of centralizing mappings is a theorem first proved by E. Posner [5]. J. Vukman [6] has studied some results concerning
symmetric bi-derivations on prime and semi prime rings. In this paper we proved some results in symmetric left
bi-derivations on semiprime rings.

Throughout this paper R will be associative. We shall denote by Z(R) the center of a ringR. Recall that a ring R is
semiprime if aRa = (0) impliesthat a =0 . We shall write [x,y] for xy-yx and use the identities
xy,z] = [x,z]y + x[y, 2], [x,yz] = [x,y]z + y[x,z] .An additive map d:R—> R is called derivation if
d(xy) = d(x)y + xd(y) holds for all x,y € R.A mapping B(.,.):R X R = R is said to be symmetric if B(x,y) =
B(y,x) holds for all x,y € R.A mapping f:R — R defined by f(x) = B(x,x), where B(.,.):RXR >R is a
symmetric mapping, is called a trace of B. It is obvious that, in case B(.,.): R X R - R is symmetric mapping which is
also bi-additive (i. e. additive in both arguments) the trace of B satisfies the relationf(x +y) = f(x) + f(y) +
2B(x,y), for allx,y € R.We shall use the fact that the trace of a symmetric bi-additive mapping is an even function. A
symmetric bi-additive mapping D(.,.):R X R — R is called a symmetric bi-derivation if D(xy,z) = D(x,z)y +
xD(y,z) is fulfilled for all x,y,z € R.Obviously, in this case also the relationD(x,yz) = D(x,y)z + yD(x, z) for
all x,y,z€ R. A symmetric bi-additive mapping D(.,.):R X R —» R is called a symmetric left bi-derivation if
D(xy,z) = xD(y,z) + yD(x, z) for all x,y,z € R. Obviously, in this case also the relation D(x,yz) = yD(x,z) +
zD(x,y) for allx,y,z € R. A mapping f: R — R is said to be commuting on R if [f(x),x] = 0 holds for allx € R. A
mapping f: R — R is said to be centralizing on R if [f(x),x] € Z(R) is fulfilled for allx € R. A ring R is said to be
n-torsion free if whenever na = 0, with a € R, then a = 0, where n is nonzero integer.

MAIN RESULTS
Lemma 1: [4, Lemma 1] Let d : R — R be a derivation, where Ris a semiprime ring. Suppose that either
(i) ad(x) = 0,forallx € R or

(if) d(x)a = 0, for all x € R holds. In both the cases we have a = 0or d = 0.

Lemma 2: [1, Lemma 3.10] Let R be a semiprime ring of characteristic not two and let a, b € R be a fixed elements. If
axb + bxa = 0 is fulfilled for all x € R, then eithera =0 or b = 0.

Theorem 1: Let R be a 2-torsion free semiprime ring. Suppose there exists a symmetric left bi-derivation
D(.,.):R X R — R such that D(d(x), x) = 0 holds for all x € R, where dbe a trace of D. In this case D = 0.

Proof: We have D(d(x),x) = 0, forall x € R. @
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We replace d(x) by d(x)y in (1), we get
D(d(x)y,x) =0
d(x)D(y,x) + yD(d(x),x) =0

By using (1) in the above equation, we get
dx)D(y,x) =0
d(x)D(x,y) =0, forallx,y € R.

We replace x by x? in (2), we get
d(x®>)D(x%,y) =0
4x%d(x)2xD(x,y) = 0
8x%d(x)xD(x,y) =0

If x = 0 itis trivial, if x # 0 then d(x)xD(x,y) = 0, forall x,y € R.

By the linearization of (1), we get

DA(x+y),x+y)=0

D(dx)+dly)+2D(x,y),x+y)=0

D(d(x),x) + D(d(x),y) + D(d(¥),x) + D(d(¥),¥) + D(2D(x,¥),x) + D(2D(x,¥),y) =0

By using (1) in the above equation, we get
D(d(x),y) + D(d(y),x) + D(2D(x,y),x) + D(2D(x,y),y) =0
D(d(x),y) + D(d(y),x) + 2D(D(x,y),x) + 2D(D(x,y),y) = 0, forall x,y € R.

We replace x by —x in (4), we get
D(d(=x),y) + D(d(y),—x) + 2D(D(=x,y), —x) + 2D(D(—x,y),y) = 0
D(d(x),y) —D(d(y),x) +2D(D(x,y),x) —2D(D(x,y),y) = 0, for allx,y € R.

By adding (4) and (5), we get
2D(d(x),y) +4D(D(x,y),x) =0
D(d(x),y) +2D(D(x,y),x) = 0, forall x,y € R.

We replace y by xy in (6), we get

D(d(x),xy) + 2D(D(x,xy),x) =0

xD(d(x),y) + yD(d(x),x) + 2D(xD(x,y) + yD(x,x),x) =0
xD(d(x),y) + yD(d(x),x) + 2D(xD(x,y),x) + 2D(yD(x,x),x) =0

xD(d(x),y) + yD(d(x),x) + 2xD(D(x,y),x) + 2D(x,y)D(x,x) + 2yD(D(x,x),x) + 2D(x,x)D(y,x) = 0
xD(d(x),y) + yD(d(x),x) + 2xD(D(x,y),x) + 2D (x,y)d(x) + 2yD(d(x),x) + 2d(x)D(y,x) =0

By using (1) and (6) in the above equation, we get
2D(x,y)d(x) +2d(x)D(y,x) =0
D(x,y)d(x) + d(x)D(x,y) =0, forallx,y € R.

By using (2) in (7), we get
D(x,y)d(x) =0, forall x,y € R.

We replace y by x in (7), we get
D(x,x)d(x) +d(x)D(x,x) =0
d(x)d(x) +d(x)d(x) =0
2d(x)d(x) =0

d(x)d(x) = 0, forall x € R.

We replace y by yx in (7), we get

D(x,yx)d(x) + d(x)D(x,yx) =0

yD (x,x)d(x) + xD(x,y)d(x) + d(x)yD(x,x) + d(x)xD(x,y) =0
yd(x)d(x) + xD(x,y)d(x) + d(x)yd(x) + d(x)xD(x,y) =0

By using (3), (8), (9) in above equation, we get
d(x)yd(x) =0, forall x,y € R.

Which implies that d(x) = 0, for all x € R, by semiprimeness of R, which means that D(x,y) = 0, forall x,y € R.
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Theorem 2: Let R be a 2-torsion and 3-torsion free semiprime ring. Let D(.,.):R X R - Rand B(.,.):R X R - R be
a symmetric left bi-derivation and symmetric bi-additive mapping respectively. Suppose that d(d(x)) = f(x) holds for
all x € R, where d be a trace of D and fbe a trace of B. In this case D = 0.

Proof: We have d(d(x)) = f(x), for all x € R. (10)

By the linearization of (10), we get

dd(x+y))=f(x+y)

d(d(x) +d(y) +2D(x,y)) = f(x) + f(¥) + 2B(x,y)

d(d(x)) + d(d(y)) + d(ZD(x, y)) + ZD(d(x), d(y)) + ZD(d(x), ZD(x,y)) + ZD(d(y), 2D (x, y))
=f()+ ) +2B(x,y)

d(d(x)) + d(d(y)) + 4d(D(x, y)) + ZD(d(x), d(y)) + 4D(d(x), D(x, y)) + 4D(d(y),D(x, y))
=f(x)+f)+2B(xy)

By using (10) in the above equation, we get
4d(D(x, y)) + 2D(d(x), d(y)) + 4D(d(x),D(x, y)) + 4D(d(y), D(x, y)) = 2B(x,y)
2d(D(x,y)) + D(d(x),d(y)) + 2D(d(x),D(x,y)) + 2D(d(»),D(x,y)) = B(x,), forall x,y € R. (11)

We replace x by —x in (11), we get
Zd(D(—x, y)) + D(d(—x), d(y)) + ZD(d(—x), D(—x, y)) + ZD(d(y),D(—x, y)) =B(—x,y)
Zd(D(x, y)) + D(d(x),d(y)) - ZD(d(x),D(x, y)) - 2D(d(y),D(x,y)) = —B(x,y), forall x,y € R. (12)

Subtract (12) from (11), we get
4D(d(x),D(x,¥)) + 4D(d(¥), D(x,¥)) = 2B(x,y)
2D(d(x),D(x,y)) + 2D(d(),D(x,y)) = B(x,y),forall x,y € R. (13)

We replace x by 2x in (13), we get

ZD(d(Zx),D(Zx,y)) + ZD(d(y),D(Zx, y)) = B(2x,y)

16D(d(x), D(x,y)) + 4D(d(y),D(x,y)) = 2B(x,y)

8D(d(x), D(x, y)) + ZD(d(y),D(x, y)) = B(x,y), forall x,y € R. (14)

Subtract (13) from (14), we get
6D(d(x),D(x, y)) =0

Since R is 2-torison and 3-torison free ring, we get
D(d(x),D(x,y)) =0, forall x,y € R. (15)

By using (15) and (13), we get
B(x,y) =0, forall x,y € R.

We replace y by x in the above equation, we get f(x) = 0, for all x € R. (16)

By using (1) and (16), we get
d(d(x)) =0, forall x € R. 17

We replace y by yz in (15), we get

D(d(x),D(x,yz)) =0

D(d(x),yD(x, z) + zD(x,y)) =0

D(d(x),yD(x, z)) + D(d(x), zD (x, y)) =0

yD(d(x),D(x, z)) +D(x,z2)D(d(x),y) + zD(d(x),D(x,y)) + D(x,y)D(d(x),z) =0

By using (15) in the above equation, we get
D(x,z)D(d(x),y) + D(x,y)D(d(x),z) = 0, forall x,y,z € R. (18)

We replace z by d(x) in (18), we get
D(x,d(x))D(d(x),y) + D(x, y)D(d(x),d(x)) =0
D(x,d(x))D(d(x),y) + D(x,y)d(d(x)) =0
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By using (17) in the above equation, we get
D(x,d(x))D(d(x),y) =0, forall x,y € R. (19)

We replace y by xy in (19), we get

D(x, d(x))D(d(x),xy) =0

D(d(x),x)(xD(d(x),y) + yD(d(x), x)) =0
D(d(x),x)xD(d(x),y) + D(d(x),x)yD(d(x),x) =0

We replace y by x in the above equation we get D(d(x),x)xD(d(x),x) = 0, which implies D(d(x),x) = 0 for all
X € R since we have assumed that R is semiprime. Now Theorem 1 completes the proof.
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