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ABSRACT 
In this paper we introduce the concept of T-fuzzy bi-ideals using t-norm in zero-symmetric near-ring and investigate 
some of their properties. 
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1. INTRODUCTION 
 
The theory of fuzzy set was first inspired by Zadeh[6]. Triangular norms were introduced by Schweizer and Sklar [4, 5] 
to model the distances in probabilistic metric spaces. P.Dheena, G.Mohanraj [3] and M.Akram [2] have studied several 
properties of T-fuzzy ideals of rings and T-fuzzy ideals of near-rings. In [1] Abou-zaid introduced the notion of a fuzzy 
subnear-ring. In this paper we introduce the notion of fuzzy bi-ideals in near-rings with respect to t-norm T and 
investigate some of their properties. Also we prove that every T-fuzzy bi-ideals of a regular near-ring N is a T-fuzzy 
subnear-ring of N.  
 
2. PRELIMINARIES 
 
Definition 2.1: An algebra (N, +, .) is said to be a near-ring if it satisfies the following conditions:  

(1) (N,+) is a group (not necessarily abelian), 
(2) (N, .) is a semi group, 
(3) For all x, y, z∈N, x. (y+z) = x.y+x.z. 

 
Definition 2.2: A mapping f:N→N′ is called a near-ring homomorphism if f(x+y)=f(x)+f(y) and f(xy)=f(x) f(y)  for all  
x, y∈N. 
 
Definition 2.3: [6]. A mapping µ: X→[0,1],where X is an arbitrary nonempty set and is called a fuzzy set in X. 
 
Definition 2.4: [1]. A fuzzy subset µ in a near-ring N is said to be a fuzzy subnear-ring of N if it satisfies the following 
conditions: 

(1)  µ(x-y) ≥ min{µ(x), µ(y)}, 
(2)  µ(xy) ≥ min{µ(x), µ(y)} for all x, y∈N. 

 
Lemma 2.5:.If µ is a fuzzy bi-ideal of N, then µ(0) ≥ µ(x) for all x∈N. 
 
Definition 2.6.[4]: A t-norm is a function T:[0,1]x[0,1]→[0,1] that satisfies the following conditions for all                  
x, y, z∈[0,1], 

(1) T(x,1) =x, 
(2) T(x, y) =T(y, x), 
(3) T(x, T(y, z)) = T(T(x, y), z), 
(4) T(x, y) ≤ T(x, z) whenever y ≤ z. 
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A simple example of such defined t-norm is a function T(x, y) = min(x, y). In general case, T(x, y) ≤ min(x, y) and    
T(x, 0) = 0 for all x, y∈[0,1]. 
 
Definition 2.7: A subgroup B of N is said to be bi-ideal if BNB ⊆ B. 
 
Definition 2.8: Let µ, λ be the fuzzy subsets of a set X. A fuzzy subset (µ∩λ) (x) = min{µ(x), λ(x)}. 
 
Definition 2.9:.Let µ, λ be the fuzzy subsets of a set X. A fuzzy subset (µ∧λ) (x) = T(µ(x), λ(x)). 
 
Definition 2.10: A fuzzy subset µ of a near-ring N is called fuzzy bi-ideal if 

(1) µ(x-y) ≥ min{µ(x),µ(y)} 
(2) µ(xyz) ≥ min{µ(x),µ(z)} for all x, y, z∈N. 

 
Definition 2.11: A fuzzy bi-ideal µ of a near-ring N is said to be normal if µ(0)=1. 
 
Definition 2.12:.Let N and N′ be two near-rings and ‘f ’a function of N into N′. 

(1) If λ is a fuzzy set in N′ , then the preimage of λ under ‘ f ‘ is the fuzzy set in N defined by  
µ(x) = (λοf) (x) = λ(f(x)) for each x∈N, 

(2) If µ is a fuzzy set of N ,then the image of µ  under f is the fuzzy set in N′ defined by  
 

f(µ)(y) =
𝑠𝑠𝑠𝑠𝑠𝑠

      x ∈f−1(y)µ(x)   if  f -1(y) ≠φ,  

0                   otherwise for each y∈N′. 
 

3. SOME THEOREMS ON T-FUZZY BI-IDEALS IN NEAR-RINGS 
 
Definition 3.1: A fuzzy subset µ of a near-ring N is called T- fuzzy bi-ideal if 

(1) µ(x-y) ≥ T(µ(x),µ(y)) 
(2) µ(xyz) ≥ T(µ(x),µ(z)) for all x, y, z ∈N. 

 
Note: If we take T-norm as min-norm T-fuzzy bi-ideal coincides with fuzzy bi-ideal. 
 
Example 3.2: Let N= {0, a, b, c} be the klein’s four group. Define multiplication in N as follows. 

 
 

 
Then (N, +, .) is a near-ring  ((see[6], p.408) scheme 15). Define a fuzzy set µ: N→[0,1] by µ(0)=µ(a)=0.3,              
µ(b) = µ(c) = 0.2. Let T be a t-norm defined by T(α,β) = max(α+β-1)  for all α, β∈[0,1]. Then it can be easily verified 
that N is a T-fuzzy bi-ideal of N. 
 
Theorem 3.3: Every fuzzy bi-ideal of a near-ring N is a T-fuzzy bi-ideal of N. 
 
Proof: Let µ be fuzzy bi-ideal. Let x, y, z ∈ N.  
 
Then µ(x-y) ≥ min{µ(x), µ(y)} ≥ T(µ(x), µ(y)) and µ(xyz) ≥ min{µ(x),µ(z)}≥T(µ(x), µ(z)). Thus µ is a T-fuzzy bi-ideal 
of a near-ring N. 
 
Theorem 3.4: If µ and  λ are T-fuzzy bi-ideal of a Near-ring N, then µ∧λ is a T-fuzzy bi-ideal of a Near-ring N. 
 
Proof: Let µ and  λ be a T-fuzzy bi-ideal of a Near-ring N. 

For let x, y, z∈N,  
(1) (µ∧λ)(x-y) = T(µ(x-y), λ(x-y)) 
                          ≥ T[T(µ(x),µ(y)), T(λ(x),λ(y))] 
                          = T(T(T(µ(x), µ(y)),λ(x)), λ(y)) 
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                          = T(T(λ(x), T(µ(x), µ(y)), λ(y)) 
                          = T(T(T(λ(x), µ(x)), µ(y)), λ(y)) 
                          = T(T(µ(x), λ(x)), T(µ(y), λ(y))) 
                          = T((µ∧λ)(x), (µ∧λ)(y)). 
Therefore (µ∧λ) (x-y) ≥ T((µ∧λ)(x), (µ∧λ)(y)). 
 
(2) (µ∧λ)(xyz) = T(µ(xyz), λ(xyz)) 
                           ≥ T(T(µ(x), µ(z)), T(λ(x), λ(z))) 
                           = T{T[T(µ(x), µ(z)), λ(x)], λ(z)} 
                           = T{T[λ(x), T(µ(x), µ(z)], λ(z)} 
                           = T{T[T(λ(x), µ(x)), µ(z)], λ(z)} 
                           = T{T(λ(x), µ(x)), T(µ(z), λ(z))} 
                           = T((µ∧λ)(x), (µ∧λ)(z)) 
Therefore (µ∧λ) (xyz) ≥ T((µ∧λ)(x), (µ∧λ)(z)). 
 
Hence µ∧λ is a T-fuzzy bi-ideal of N. 

 
Corollary 3.5:.If µ and λ are fuzzy bi-ideals of a near-ring N, then µ∩λ is a fuzzy bi-ideal of N. 
 
Proof: By taking min T-norm in Theorem 3.4 we get the result. 
 
Theorem 3.6: Every T-fuzzy bi-ideal of a regular near-ring N is a T-fuzzy Subnear-ring of N. 
 
Proof: Let µ be a T-fuzzy bi-ideal of a near-ring N. Let a, b∈N. Then µ(a-b) ≥T( µ(a), µ(b)).It is enough to prove that 
µ(ab) ≥T(µ(a), µ(b)). Since N is regular, there exists x∈N such that a = axa.  
 
Now, µ(ab) = µ((axa)b) =µ(a(xa)b) ≥ T(µ(a), µ(b)). Hence µ is a T-fuzzy subnear-ring of N. 
 
Theorem 3.7: A fuzzy set µ in a near-ring N is a T-fuzzy bi-ideal of N iff the level set U(µ; α)={x∈N/µ(x) ≥ α} is a 
bi-ideal of N when it is non-empty. 
 
Proof: Let x, y ∈U(µ ; α). Then µ(x) ≥ α and µ(y) ≥ α.Now, µ(x-y) ≥ T(µ(x), µ(y)) ≥ α we get x-y∈U(µ; α). Hence 
U(µ; α) is a subgroup of N. Let x, z ∈U(µ; α) and y∈N. Then µ(x) ≥ 𝛼𝛼 and µ(z) ≥ α.Therefore µ(xyz) ≥ T(µ(x),       
µ(z)) ≥ α we get xyz∈U(µ; α). Hence U(µ; α) is a bi-ideal of N. 
 
Conversely: suppose that x, y∈N and µ(x-y) < T(µ(x), µ(y)). choose α such that µ(x-y) < α < T(µ(x), µ(y)) we get      
x, y∈U(µ; α). But x-y∉U(µ; α) ,a contradiction. Therefore µ(x-y) ≥ T(µ(x), µ(y)).similarly we can prove that       
µ(xyz) ≥ T(µ(x), µ(z)).Hence µ is a T-fuzzy bi-ideal of N. 
 
Theorem 3.8:.Let f: N→N′ be an onto homomorphism of near-rings. If µ is a T-fuzzy bi-ideal of N, then f(µ) is a       
T-fuzzy bi-ideal in N′. 
 
Proof: Let µ be a T-fuzzy bi-ideal of N. Then {x/x∈f -1(y1 –y2)}⊇{x1 –x2  /  x1∈f -1(y1), x2∈f -1(y2)}. 

(i) f(µ)(y1 –y2) = sup{µ(x)/x∈f -1(y1 –y2)} 
                           ≥ sup{µ(x1 –x2)/ x1∈f -1(y1),  x2∈f -1(y2)} 
                           ≥ sup{T(µ(x1), µ(x2 )) / x1∈f -1(y1), x2∈f -1(y2)} 
                           = T(sup{µ(x1) /  x1∈f -1(y1)}, sup{µ(x2) / x2∈f -1(y2)}) 
                           = T(f(µ)(y1), f(µ)(y2)) 

 
Therefore f(µ)(y1 –y2) ≥T(f(µ)(y1), f(µ)(y2)). 

(ii) f(µ)(y1y2y3) = sup{µ(x)/x∈f -1(y1y2y3)} 
                           ≥ sup{µ(x1x2x3)/x1∈f -1(y1), x2∈f -1(y2),  x3∈f -1(y3)} 
                           ≥ sup{T(µ(x1), µ(x3)) /x1∈f -1(y1), x3∈f -1(y3)} 
                           = T(sup{µ(x1)/ x1∈f -1(y1)}, sup{µ(x3)/ x3∈f -1(y3)}) 
                           = T (f(µ)(y1), f(µ)(y3)). 

 
Therefore f(µ)(y1y2y3)≥T(f(µ)(y1), f(µ)(y3)). 
 
Hence f(µ) is a T-fuzzy bi-ideal of N′. 
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Theorem 3.9: Let µ be a T-fuzzy bi-ideal of a near-ring N and let µ* be a fuzzy set in N defined by µ*(x) = µ(x)+1-µ(0) 
for all x∈N. Then µ* is a normal T-fuzzy bi-ideal of N containing µ. 
 
Proof: Let µ be a T-fuzzy bi-ideal of a near-ring N. 

For any x, y∈N, 
              µ*(x-y) = µ(x-y)+1-µ(0) 
                           ≥ T(µ(x), µ(y))+1-µ(0) 
                           = T(µ(x)+1-µ(0), µ(y)+1-µ(0)) 
                           = T(µ*(x), µ*(y)) 
 
Therefore µ*(x-y) ≥ T(µ*(x), µ*(y)). 
 
For any x, y, z ∈ N, 
                  µ*(xyz) = µ(xyz)+1-µ(0) 
                               ≥ T(µ(x), µ(z))+1-µ(0) 
                               = T(µ(x)+1-µ(0), µ(z)+1-µ(0)) 
                               = T(µ*(x), µ*(z)). 
 
Therefore µ*(xyz) ≥ T(µ*(x), µ*(z)). 
 
Hence µ* is a T-fuzzy bi-ideal of a near-ring N. Clearly µ* (0) = 1 and µ⊂µ*. This ends the proof. 
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