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ABSTRACT 

The notion of essential subsemimodule was introduced by Pawar in [6].  In this paper we define semi-essential 
subsemimodule and extend some results of essential subsemimodule to semi-essential subsemimodule over a semiring.  
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1. INTRODUCTION 

  
The notion of semi-essential submodule was given by Ali S. Mijbass and Nada K. Abdullah in [4]. The notion of 
essential subsemimodule was introduced by Pawar in [6] and in [5] Pawar and Deore discussed some basic results for 
essential ideals. In this paper we define semi-essential subsemimodule and extend some results of essential 
subsemimodule and essential ideal of [5] and [6] to semi-essential subsemimodule over a semiring on the line of [4]. 
 
2. PRELIMINARIES  
 
For preliminary definitions and properties of semirings, ideals, semimodules etc. the reader is referred to [2]. 
 
Definition: 2.1 A semiring is a set 𝑅𝑅 together with two binary operations called addition (+) and multiplication (∙) 
such that (𝑅𝑅, +) is a commutativemonoid with identity element 0𝑅𝑅 ; (𝑅𝑅, ∙) is a monoid with identity element                 
1, multiplication distributes over addition from either side and 0 is multiplicative absorbing, that is, 𝑎𝑎 ∙ 0 =  0 ∙ 𝑎𝑎 =
 0 for each 𝑎𝑎 ∈ 𝑅𝑅.A semiring 𝑅𝑅 is said to have a unity if there exists 1𝑅𝑅 ∈ 𝑅𝑅 such that 1𝑅𝑅 ∙ 𝑎𝑎 = 𝑎𝑎 ∙ 1𝑅𝑅 = 𝑎𝑎 for each  
 𝑎𝑎 ∈ 𝑅𝑅. 
 
For e.g.: The set ℕof non-negative integers with the usual operations ofaddition and multiplication of integers is a 
semiring with1ℕ. 
 
Definition: 2.2 Let 𝑅𝑅 be a semiring. A left 𝑅𝑅-semimodule is a commutative monoid (𝑀𝑀, +) with additive identity 
0𝑀𝑀  for which we have a function 𝑅𝑅 × 𝑀𝑀 → 𝑀𝑀 defined by (𝑟𝑟,𝑚𝑚) ↪ 𝑟𝑟 ∙ 𝑚𝑚 and called scalar multiplication which 
satisfies the following conditions for all 𝑟𝑟 and 𝑟𝑟′of 𝑅𝑅 and all elements 𝑚𝑚 and 𝑚𝑚′ of  𝑀𝑀, 

1. (𝑟𝑟 ∙ 𝑟𝑟′)𝑚𝑚 =  𝑟𝑟(𝑟𝑟′ ∙ 𝑚𝑚) 
2. 𝑟𝑟 ∙ (𝑚𝑚 +  𝑚𝑚′)  =  𝑟𝑟 ∙ 𝑚𝑚 +  𝑟𝑟 ∙ 𝑚𝑚′ 
3. (𝑟𝑟 +  𝑟𝑟′) ∙ 𝑚𝑚 =  𝑟𝑟 ∙ 𝑚𝑚 +  𝑟𝑟′ ∙ 𝑚𝑚 
4. 1𝑅𝑅 ∙ 𝑚𝑚 =  𝑚𝑚 (If exists) 
5. 𝑟𝑟 ∙ 0𝑀𝑀 =  0𝑀𝑀 =  0𝑅𝑅 ∙ 𝑚𝑚. 

 
Convention: In this paper all semirings considered will be assumed to be commutative semirings with unity. 
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3. ESSENTIAL SUBSEMIMODULES 
 
The notion of essential subsemimodule was introduced by Pawar in [6]. 
 
Definition: 3.1 [6] A nonzero 𝑅𝑅-subsemimodule 𝑁𝑁 of 𝑀𝑀 is called essential subsemimodule of 𝑀𝑀 if  𝑁𝑁 ∩ 𝐾𝐾 ≠ 0 for 
each nonzero R-subsemimodule 𝐾𝐾 of 𝑀𝑀 
 
Proposition: 3.2 [6] Let 𝑀𝑀 be a left 𝑅𝑅-semimodule. Any subsemimodule of 𝑀𝑀 which contains an essential 
subsemimodule of 𝑀𝑀 is itself essential in 𝑀𝑀. 
 
Proposition: 3.3 [6] Let 𝑀𝑀 be a left 𝑅𝑅-semimodule. If 𝐾𝐾 is an essential subsemimodules of 𝐿𝐿 and 𝐿𝐿 is an essential 
subsemimodule of 𝑀𝑀 then 𝐾𝐾 is essential in 𝑀𝑀. 
 
4. SEMI-ESSENTIAL SUBSEMIMODULES 
 
Definition: 4.1 [3] Let 𝑅𝑅 be a semiring and 𝑀𝑀 be an 𝑅𝑅-semimodule. A subsemimodule 𝑁𝑁 of 𝑀𝑀 is called prime if  

i) 𝑁𝑁 is proper subsemimodule of 𝑀𝑀 and  
ii) If for any 𝑚𝑚 𝜖𝜖 𝑀𝑀, 𝑟𝑟 ∈ 𝑅𝑅, 𝑚𝑚𝑟𝑟 ∈ 𝑁𝑁 ⇒ 𝑚𝑚 ∈ 𝑁𝑁 or 𝑟𝑟 ∈ 𝐴𝐴𝑁𝑁(𝑀𝑀) = {𝑎𝑎 ∈ 𝑅𝑅 | 𝑎𝑎𝑀𝑀 ⊆ 𝑁𝑁}. 

 
Definition: 4.2 A nonzero 𝑅𝑅-subsemimodule 𝑁𝑁 of 𝑀𝑀 is called semi-essential if 𝑁𝑁 ∩ 𝑃𝑃 ≠  0 for each nonzero prime       
𝑅𝑅-subsemimodule 𝑃𝑃 of 𝑀𝑀.  
 
Note: Any essential 𝑅𝑅-subsemimodule is semi-essential subsemimodule.  
 
Proposition: 4.3 If 𝑀𝑀 is a semi-simple 𝑅𝑅-semimodule, then 𝑀𝑀 is the only semi-essential 𝑅𝑅-subsemimodule of 𝑀𝑀. 
 
Proposition: 4.4 A nonzero 𝑅𝑅-subsemimodule 𝑁𝑁 of 𝑀𝑀 is semi-essential if and only if for each nonzero prime             
𝑅𝑅-subsemimodule 𝑃𝑃 of 𝑀𝑀 there exists 𝑥𝑥 ∈ 𝑃𝑃 and there exists 𝑟𝑟 ∈ 𝑅𝑅 such that 0 ≠ 𝑟𝑟𝑥𝑥 ∈ 𝑁𝑁. 
 
Proposition: 4.5 Let 𝑀𝑀 be an 𝑅𝑅-semimodule and let 𝑁𝑁1,𝑁𝑁2 be 𝑅𝑅-subsemimodules of 𝑀𝑀 such that 𝑁𝑁1 is an                   
𝑅𝑅-subsemimodule of 𝑁𝑁2. If 𝑁𝑁1 is a semi-essential 𝑅𝑅-subsemimodule of 𝑀𝑀, then 𝑁𝑁2 is a semi-essential                           
𝑅𝑅-subsemimodule of 𝑀𝑀.  
 
Corollary: 4.6 Let 𝑁𝑁1 and 𝑁𝑁2 are 𝑅𝑅-subsemimodules of 𝑀𝑀. If 𝑁𝑁1 ∩ 𝑁𝑁2 is a semi-essential 𝑅𝑅-subsemimodule of 𝑀𝑀, then 
𝑁𝑁1 and 𝑁𝑁2 are semi-essential. 
 
Proposition: 4.7 Let 𝑁𝑁1 and 𝑁𝑁2 are 𝑅𝑅-subsemimodules of 𝑀𝑀 such that 𝑁𝑁1 is essential and 𝑁𝑁2 is semi-essential. Then 
𝑁𝑁1 ∩ 𝑁𝑁2  is a semi-essential 𝑅𝑅-subsemimodule of 𝑀𝑀. 
 
Lemma: 4.8 Let 𝑁𝑁 be an 𝑅𝑅-subsemimodule of 𝑀𝑀 and let 𝑃𝑃 be a prime subsemimodule of 𝑀𝑀. If (𝑁𝑁 ∩ 𝑃𝑃: 𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑀𝑀), 
for each 𝑥𝑥 ∈ 𝑀𝑀and 𝑥𝑥 ∉ 𝑁𝑁 ∩ 𝑃𝑃, then 𝑁𝑁 ∩ 𝑃𝑃 is a prime 𝑅𝑅-subsemimodule of 𝑀𝑀. 
 
Proof: Let 𝑟𝑟𝑚𝑚 ∈ 𝑁𝑁 ∩ 𝑃𝑃, where 𝑟𝑟 ∈ 𝑅𝑅 and 𝑚𝑚 ∈ 𝑀𝑀 and suppose that 𝑚𝑚 ∉ 𝑁𝑁 ∩ 𝑃𝑃.Now since 𝑟𝑟𝑚𝑚 ∈ 𝑁𝑁 ∩ 𝑃𝑃 then            
 𝑟𝑟 ∈ (𝑁𝑁 ∩ 𝑃𝑃:𝑚𝑚). This implies that 𝑟𝑟 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑀𝑀), and hence 𝑟𝑟 ∈ (𝑁𝑁:𝑀𝑀) ∩ (𝑃𝑃:𝑀𝑀).Therefore 𝑟𝑟 ∈ 𝑟𝑟 (𝑁𝑁 ∩ 𝑃𝑃:𝑀𝑀)). Thus 
𝑁𝑁 ∩ 𝑃𝑃 is a prime 𝑅𝑅-subsemimodule of 𝑀𝑀. 
 
Proposition: 4.9 Let 𝑁𝑁1 and 𝑁𝑁2 are semi-essential 𝑅𝑅-subsemimodules of 𝑀𝑀. If (𝑁𝑁1 ∩ 𝑃𝑃: 𝑥𝑥) = 𝑎𝑎𝑎𝑎 𝑎𝑎(𝑀𝑀), for each prime 
𝑅𝑅-subsemimodule 𝑃𝑃 of 𝑀𝑀, for each 𝑥𝑥 ∈ 𝑀𝑀 and 𝑥𝑥 ∉ 𝑁𝑁1 ∩ 𝑃𝑃, then 𝑁𝑁1 ∩ 𝑁𝑁2 is semi-essential. 
 
Proof: Let 𝑃𝑃 be a nonzero prime 𝑅𝑅-subsemimodule of 𝑀𝑀. Now by Lemma 4.8, 𝑁𝑁1 ∩ 𝑃𝑃 is a prime 𝑅𝑅-subsemimodule of 
𝑀𝑀. Therefore (𝑁𝑁1 ∩ 𝑁𝑁2) ∩ 𝑃𝑃 = 𝑁𝑁2 ∩ (𝑁𝑁1 ∩ 𝑃𝑃) ≠ 0. Thus 𝑁𝑁1 ∩ 𝑁𝑁2 is semi-essential. 
 
Definition: 4.10 Let 𝑀𝑀 and 𝑁𝑁 be 𝑅𝑅-semimodules. An 𝑅𝑅-homomorphism 𝑓𝑓: 𝑀𝑀 → 𝑁𝑁 is called semi-essential if 𝑓𝑓(𝑀𝑀) is a 
semi-essential 𝑅𝑅-subsemimodule of 𝑁𝑁.  
 
Proposition: 4.11 𝑁𝑁 is a semi-essential 𝑅𝑅-subsemimodule of 𝑀𝑀 if and only if the inclusion function 𝑖𝑖:𝑁𝑁 ⟶ 𝑀𝑀 is semi-
essential 𝑅𝑅-momomorhism. 
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