International Research Journal of Pure Algebra-5(5), 2015, 75-80 # Available online through www.rjpa.info ISSN 2248-9037 # ON THE BLOCK-EDGE TRANSFORMATION GRAPHS G^{ab} ### B. BASAVANAGOUD* AND SHREEKANT PATIL¹ Department of Mathematics, Karnatak University, Dharwad - 580 003, India. (Received On: 04-05-15; Revised & Accepted On: 18-05-15) #### ABSTRACT **I**n this paper, we introduce block-edge transformation graphs. We investigate some basic properties such as connectedness, graph equations and diameters of the block-edge transformation graphs. 2010 Mathematics Subject Classification: 05C12, **Keywords:** line graph, jump graph, plick graph, block-edge transformation graphs G^{ab} . ### 1. INTRODUCTION All the graphs considered here are finite, undirected without loops or multiple edges. We refer to [4] for unexplained terminology and notation. A *block* of a graph is connected nontrivial graph having no cutvertices. Let G = (V, E) be a graph with block set $U(G) = \{B_i; B_i \text{ is a block of } G\}$. If a block $B \in U(G)$ with the edge set $\{e_1, e_2, \ldots, e_r; r \geq 1\}$, then we say that the edge e_i and block B are incident with each other, where $1 \leq i \leq r$. The block B and an edge e are said to be adjacent if e is adjacent with at least one incident edge of B, otherwise not adjacent. The *line graph* L(G) of a graph G is the graph with vertex set as the edge set of G and two vertices of G are adjacent whenever the corresponding edges in G have a vertex in common. The *jump graph* G is the graph whose the vertex set is the edge set of G and two vertices of G are not adjacent in G. The *plick graph* G is the graph G is the graph whose set of vertices is the union of the set of edges and blocks of G and in which two vertices are adjacent if and only if the corresponding edges of G are adjacent or one is corresponds to an edge and other is corresponds to a block are incident. This concept is introduced by G is the graph of a graph, we define the following block-edge transformation graphs. **Definition:** Let G = (V, E) be a graph with a block set $U(G) = \{B_i; B_i \text{ is a block of } G\}$, and a, b be two variables taking values + or -. The block-edge transformation graph G^{ab} is a graph whose vertex set is $E(G) \cup U(G)$, and two vertices x and y of G^{ab} are joined by an edge if and only if one of the following holds: - (i) Suppose x and y are in E(G). a = + if x, y are adjacent in G; a = if x and y are not adjacent in G. - (ii) Suppose $x \in E(G)$ and $y \in U(G)$. b = + if x, y are incident with each other in G; b = if x, y are not incident with each other in G. Thus, we obtain four kinds of block-edge transformation graphs G^{++} , G^{+-} , G^{-+} and G^{--} in which G^{++} is exactly the plick graph of G. Some other graph valued functions were studied in [1, 5, 8, 9, 11]. The vertex $e_i^{'}$ ($B_i^{'}$) of G^{ab} corresponding to edge e_i (block B_i) of G^{ab} and is referred as edge (block)-vertex. The following will be useful in the proof of our results. **Remark: 1.1** L(G) is an induced subgraph of G^{++} and G^{+-} . **Remark: 1.2** I(G) is an induced subgraph of G^{-+} and G^{--} . **Theorem: 1.1 [4]** If G is connected, then L(G) is connected. **Theorem: 1.2 [12]** Let G be a graph of size $q \ge 1$. Then J(G) is connected if and only if G contains no edge that is adjacent to every other edge of G unless $G = K_4$ or C_4 . If a disconnected graph G has no isolated vertices, then clearly G contains no edge that is adjacent to every other edge of G. By Theorem 1.2, we have the following remark. **Remark: 1.3** If a disconnected graph G has no isolated vertices, then J(G) is connected. Since block-edge transformation graphs G^{ab} are defined on the edge set and block set of a graph G, isolated vertices of G (if G has) play no rule in G^{ab} . We assume that the graph G under consideration is nonempty and has no isolated vertices. In this paper, We investigate some basic properties of these four kinds of block-edge transformation graphs. ## 2. CONNECTEDNESS OF G^{ab} The first theorem is well-known. **Theorem: 2.1** For a given graph G, G^{++} is connected if and only if G is connected. **Theorem: 2.2** For a given graph G, G^{+-} is connected if and only if $G \neq B_i \cup B_j$ is not a block, where B_i and B_j are blocks. **Proof:** Suppose $G \neq B_i \cup B_i$ is not a block. Then we consider the following cases: **Case-1.** Suppose G is connected. Then it has at least two blocks. Hence by Theorem 1.1 and Remark 1.1, L(G) is a connected subgraph of G^{+-} , and also each block-vertex $B_i^{'}$ in G^{+-} is adjacent to at least one edge-vertex $e_j^{'}$, where e_j is not incident with B_i in G. Thus G^{+-} is connected. Case-2. Suppose G is disconnected. Then it has at least three blocks. We see that in G^{+-} , each block-vertex $B_i^{'}$ is adjacent to at least two edge-vertices $e_j^{'}$, where $e_j^{'}$ is not incident with $B_i^{'}$ in G, and each edge-vertex $e_j^{'}$ is adjacent to edge-vertex $e_k^{'}$ and at least two block-vertices $B_i^{'}$ in G^{+-} , where $e_k^{'}$ is adjacent to $e_j^{'}$, and $B_i^{'}$ is not incident with $e_j^{'}$ in G. Since in such a case, there is a path between any two vertices of G^{+-} . Hence G^{+-} is connected. Conversely, suppose G^{+-} is connected. If G is a block, then $G^{+-} = L(G) \cup K_1$ is disconnected, a contradiction. If $G = B_i \cup B_j$, then G^{+-} is a disconnected graph having two components namely $L(B_i) + K_1$ and $L(B_j) + K_1$, a contradiction. **Theorem: 2.3** For a given graph G, G^{-+} is connected if and only if G contains no block K_2 that is adjacent to every other edge of G. **Proof:** Suppose a graph G contains no block K_2 that is adjacent to every other edge of G. If G is a block, then $G^{-+} = J(G) + K_1$ is connected. If G has more than one block, then we consider the following two cases: **Case-1.** If G contains no edge that is adjacent to every other edge of G, then by Remark 1.2 and Theorem 1.2, J(G) is a connected subgraph of G^{-+} , and in G^{-+} , each block-vertex $B_i^{'}$ is adjacent to at least one edge-vertex $e_j^{'}$, where e_j is incident with B_i in G. Thus G^{-+} is connected. **Case-2.** If G contains an edge e that is adjacent to every other edge of G, then clearly e is incident with a block B of size more than 2. And $(G - e)^{-+}$ is a connected subgraph of G^{-+} and e', B', e'_1 is a path in G^{-+} (see fig. 1), where e_1 is incident with B, and each block-vertex B'_i in G^{-+} is adjacent to at least one edge-vertex e'_j , where e_j is incident with B_i in G. Hence G^{-+} is connected. Conversely, suppose G^{-+} is connected. Assume G contains a block K_2 , say e, that is adjacent to every other edge of G, then it is easy to see that $G^{-+}=(G-e)^{-+}\cup K_2$ is disconnected, a contradiction. **Theorem: 2.4** For a given graph G, G^{--} is connected if and only if $G \neq P_3$ is not a block. **Proof:** Suppose $G \neq P_3$ is not a block. We consider the following two cases: **Case-1.** Suppose G contains no edge that is adjacent to every other edge of G. Then by Remark 1.2 and Theorem 1.2, J(G) is a connected subgraph of G^{--} , and each block-vertex B_i' is adjacent to at least one edge-vertex e_j' in G^{--} , where e_i is not incident with B_i in G. Thus G^{--} is connected. Case-2. Suppose G contains an edge e that is adjacent to all other edge of G. Then by definition of G^{--} , each edge-vertex e'_i is adjacent to edge-vertex e'_i and at least one block-vertex B'_j , where B_j is not incident with e_i , and e_k is not adjacent to e_i in G. And also each block-vertex B'_j is adjacent to at least one edge-vertex e'_i , where e_i is not incident with B_j in G. Hence there is a path between any two vertices of G^{--} . Therefore G^{--} is connected. Conversely, suppose G^{--} is connected. If G is a block, then $G^{--} = J(G) \cup K_1$ is disconnected, a contradiction. If $G = P_3$, then $G^{--} = 2K_2$ is disconnected, a contradiction. ## 3. GRAPH EQUATIONS AND ITERATIONS OF G^{ab} For a given graph operator Φ , which graph is fixed under Φ ?, that is $\Phi(G) = G$. It is well known in [10] that for a given graph G, the interchange graph G' = G if and only if G is a 2-regular graph. For a given block-edge transformation graph G^{ab} , we define the iteration of G^{ab} as follows: 1. $G^{(ab)^1} = G^{ab}$ 2. $G^{(ab)^n} = [G^{(ab)^{n-1}}]^{ab}$ for $n \ge 2$. The isomorphism of G and G^{++} are shown in [6]. **Theorem: 3.1** The graphs G and G^{+-} are isomorphic if and only if $G = 2K_2$. **Proof:** Suppose $G^{+-} = G$. Assume $G \neq 2K_2$. We consider following two cases: **Case-1.** Suppose G is a block. Then clearly $G^{+-} = L(G) \cup K_1$ is disconnected. Thus $G^{+-} \neq G$, a contradiction. Case-2. Suppose G has at least two blocks with q edges. Then G^{+-} has at least 2q-1 edges. Hence the number of edges in G is less than that in G^{+-} . Thus $G^{+-} \neq G$, a contradiction. Conversely, suppose $G = 2K_2$. Then it is easy to see that $G^{+-} = G$. **Corollary: 3.2** The graphs G and $G^{(+-)^n}$ are isomorphic if and only if $G = 2K_2$. **Theorem: 3.3** The graphs G and G^{-+} are isomorphic if and only if $G = K_2$. **Proof:** Suppose $G^{-+} = G$. Assume $G \neq K_2$ with $p \geq 3$ vertices. We consider the following two cases: **Case-1.** Suppose G is connected. We consider the following two subcases: **Subcase-1.1.** Suppose G is a tree with p vertices. Then G has p-1 edges and p-1 blocks. Thus G^{-+} has 2p-2 vertices. Hence the number of vertices of G is less than that in G^{-+} . Therefore $G^{-+} \neq G$, a contradiction. **Subcase-1.2.** Suppose G is not a tree with p vertices. Then G has at least p edges and at least one block. Thus G^{-+} has at least p+1 vertices. Hence $G^{-+} \neq G$, a contradiction. Case-2. Suppose G is a disconnected graph with q edges. Then G^{-+} has at least q+1 edges. Hence $G^{-+} \neq G$, a contradiction. Conversely, suppose $G = K_2$. Then clearly $G^{-+} = G$. **Corollary: 3.4** The graphs G and $G^{(-+)^n}$ are isomorphic if and only if $G = K_2$. **Theorem: 3.5** For any graph G, $G^{--} \neq G$. **Proof:** If $G = K_2$, then $G^{--} = 2K_1 \neq G$. We consider the following two cases: **Case-1.** Suppose $G \neq K_2$ is a connected graph. Since the definitions of G^{-+} and G^{--} , we have $|V(G^{-+})| = |V(G^{--})|$. By proof of the Theorem 3.3, we have $|V(G)| \neq |V(G^{-+})|$. Hence $|V(G)| \neq |V(G^{--})|$. Therefore $G^{--} \neq G$. **Case-2.** Suppose G is a disconnected graph with q edges. Then G^{--} has at least q+1 edges. Hence $|E(G)| \neq |E(G^{--})|$. Therefore $G^{--} \neq G$. From all the above two cases, we have $G^{--} = G$. **Corollary: 3.6** For any graph G, $G^{(--)^n} \neq G$. ## 4. DIAMETERS OF Gab The distance between two vertices v_i and v_j , denoted by $d(v_i, v_j)$, is the length of the shortest path between the vertices v_i and v_j in G. The shortest $v_i - v_j$ path is often called *geodesic*. The *diameter* of a connected graph G, denoted by diam(G), is the length of any longest geodesic. In this section, we consider the diameters of G^{ab} . **Theorem: 4.1** If G is a connected graph, then $diam(G^{++}) \leq diam(G) + 1$. **Proof:** Let G be a connected graph. We consider the following three cases: Case-1. Assume G is a tree. Then it is easy to see that $diam(G^{++}) = diam(G) + 1$. Case-2. Assume G is a cycle C_n for $n \ge 3$. Then $G^{++} = W_{n+1}$ and $diam(G^{++}) < diam(G) + 1$. **Case-3.** Assume G contains a cycle C_n for $n \ge 3$. Corresponding to cycle C_n , W_{n+1} appears as subgraph in G^{++} . Therefore $diam(G^{++}) \le diam(G) + 1$. From all the above three cases, we have $diam(G^{++}) \leq diam(G) + 1$. **Theorem: 4.2** If a graph G has at least three blocks, then $diam(G^{+-}) = \begin{cases} 2 \text{ if every component of } G \text{ has at least one cutvertex} \\ 3 \text{ if at least one component of } G \text{ is a block.} \end{cases}$ **Proof:** Let e'_1 , e'_2 be the two edge-vertices of G^{+-} . If e_1 and e_2 are adjacent edges in G, then e'_1 and e'_2 are adjacent in G^{+-} . If e_1 and e_2 are not adjacent edges in G, then there exists a block G which is incident with neither G in G such that G is a path of length 2 in G in G then there exists a block G which is incident with neither G in G such that G is a path of length 2 in G in G then there exists a block G which is incident with neither G in G such that G is a path of length 2 in G in G then there exists a block G which is incident with neither G is a path of length 2. Let B_1' , B_2' be the two block-vertices of G^{+-} . Then there exists an edge e which is incident with neither B_1 nor B_2 in G such that B_1' , e', B_2' is a path in G^{+-} of length 2. Let e' and B' be the edge-vertex and block-vertex of G^{+-} respectively. If e is not incident with B in G, then e' and B' are adjacent in G^{+-} . If e is incident with B in G, then we consider the following two cases: **Case-1.** If every component of G has at least one cutvertex, then there exists an edge e_1 which is adjacent to e, and is not incident with B such that e', e'_1 , B' is a path of length 2 in G^{+-} . **Case-2.** If at least one component of G is a block, say B, then there exists not incident block B_1 and edge e_1 , where B_1 is not incident with e, and e_1 is incident with neither B nor B_1 such that e', B'_1 , e'_1 , B' is a path in G^{+-} of length 3. **Theorem: 4.3** If a connected graph G has two blocks, then $diam(G^{+-}) \leq 5$. **Proof:** Suppose G is a connected graph with two blocks B_1 and B_2 of size q_1 and q_2 respectively. Then K_{1,q_1} and K_{1,q_2} are two edge-disjoint subgraphs of G^{+-} . And there exists at least one edge e' in G^{+-} is incident with exactly one pendant vertex of K_{1,q_1} and K_{1,q_2} . It is easy that see that the diameter of star is at most 2. Hence $diam(G^{+-}) = diam(K_{1,q_1}) + diam(K_{1,q_2}) + 1 \le 2 + 2 + 1 = 5$. **Theorem:** 4.4 If a graph G contains no block K_2 that is adjacent to other edge of G, then $daim(G^{-+}) \leq 5$. **Proof:** For e'_1 , e'_2 be the two edge-vertices of G^{-+} . If e_1 and e_2 are not adjacent edges in G, then e'_1 and e'_2 are adjacent in G^{-+} . If e_1 and e_2 are adjacent edges in G, then we have one of the following case: **Case-1.** If e_1 and e_2 are incident with same block B, then e'_1 , B'_1 , e'_2 is a path of length 2 in G^{-+} . Case-2. If e_1 and e_2 are incident with different blocks B_1 and B_2 respectively, then we have the following subcases: **Subcase-2.1.** If there is an edge e which is adjacent to neither e_1 nor e_2 in G, then e_1' , e_2' is a path in G^{-+} of length 2. **Subcase-2.2.** If there is an edge e which is incident with B_2 , and is not adjacent to e_1 , then e'_1, e'_1, e'_2, e'_2 is a path in G^{-+} of length 3. **Subcase-2.3.** If there are two not adjacent edges e_3 and e_4 , where e_3 and e_4 are not adjacent to e_1 and e_2 respectively, then e'_1, e'_3, e'_4, e'_2 is a path in G^{-+} of length 3. For B_1' , B_2' be the two block-vertices of G^{-+} . Let e_1 and e_2 be the two edges incident with the blocks B_1 and B_2 respectively. We have the following cases: **Case-1.** If e_1 and e_2 are not adjacent edges in G, then B'_1, e'_1, e'_2, B'_2 is a path of length 3 in G^{-+} . **Case-2.** If e_1 and e_2 are adjacent edges in G, then we have the following subcases: **Subcase-2.1.** If there is an edge e which is adjacent to neither e_1 nor e_2 in G, then B'_1, e'_1, e'_2, B'_2 is a path of length 4 in G^{-+} . **Subcase-2.2.** If there are two not adjacent edges e_3 and e_4 , where e_3 and e_4 are not adjacent to e_2 and e_1 respectively, then B_1' , e_1' , e_2' , e_3' , e_2' , B_2' is a path in G^{-+} of length 5. For e_1' and B_2' be the edge-vertex and block-vertex of G^{-+} respectively. If e_1 is incident with B_2 in G, then e_1' and B_2' are adjacent in G^{-+} . If e_1 is not incident with B_2 in G, then we have the following cases: Case-1. If there is an edge e_2 is incident with B_2 , where e_2 is not adjacent to e_1 in G, then B_2', e_2', e_1' is a path in G^{-+} of length 2. **Case-2.** If there is an edge e_2 is incident with B_2 , and is adjacent to an edge e in G, where e_1 and e are incident with B_1 , then $B_2', e_2', e_1', B_1', e_1'$ is a path of length 4 in G^{-+} . **Case-3.** If there is an edge e which is adjacent to neither e_1 nor e_2 , and e_2 is incident with B_2 , then B_2' , e_2' , e_2' , e_1' is a path of length 3 in G^{-+} . **Theorem: 4.5** If a graph $G \neq P_3$ is not a block, then $diam(G^{--}) \leq 4$. **Proof:** Let e'_1 , e'_2 be the two edge-vertices of G^{--} . If e_1 and e_2 are not adjacent edges in G, then e'_1 and e'_2 are adjacent in G^{--} . If e_1 and e_2 are adjacent edges in G, then we have one of the following case: Case-1. If e_1 and e_2 are incident with same block, then there exist a block B which is incident with neither e_1 nor e_2 such that e_1' , B', e_2' is a path of length 2 in G^{--} . Case-2. If e_1 and e_2 are incident with different blocks B_1 and B_2 respectively in G, then we have the following subcases: **Subcase-2.1.** If there is a block B which is incident to neither e_1 nor e_2 in G, then e_1' , B', e_2' is a path in G^{--} of length 2. **Subcase-2.2.** If there is an edge e is incident with block B_2 , and is not adjacent to e_1 , then e'_2 , B'_1 , e', e'_1 is a path in G^{--} of length 3. **Subcase-2.3.** If there is an edge e_3 which is adjacent to neither e_1 nor e_2 , then e_1' , e_3' , e_2' is a path in G^{--} of length 2. Let B_1' , B_2' be two block-vertices of G^{--} . We have the following cases: Case-1. If there is an edge e which is incident with neither B_1 nor B_2 , then B_1' , e', B_2' is a path of length 2 in G^{--} . **Case-2.** If there are two not adjacent edges e_1 and e_2 are incident with B_1 and B_2 respectively, then B_1', e_2', e_1', B_2' is a path of length 3 in G^{--} . Let e' and B' be the edge-vertex and block-vertex of G^{--} respectively. If e is not incident with B in G, then e' and B' are adjacent in G^{--} . If e is incident with B in G, then we have the following cases: **Case-1.** If there is an edge e_1 is incident with B, and is not adjacent to edge e in G, then e', e'_1 , B' is a path in G^{--} of length 2. **Case-2.** If there are two not adjacent edges e_1 and e_2 , where e_1 is not incident with B, and e_2 is not adjacent to e, then B', e'_1, e'_2, e' is a path of length 3 in G^{--} . **Case-3.** If there are not incident edge e_2 and block B_3 , where e_2 is not incident with B, and B_3 is not incident to e, then e', B'_3 , e'_2 , B' is a path of length 3 in G^{--} . **Case-4.** If there is an edge e_1 which is incident with B_1 , and is not adjacent to an edge e_2 , where e_2 is incident with B, then B', e'_1, e'_2, B'_1, e' is a path of length 4 in G^{--} . #### 5. ACKNOWLEDGEMENT *This research was supported by UGC-MRP, New Delhi, India: F.No.41-784/2012 dated: 17-07-2012. ¹This research is supported by UGC-UPE (Non-NET)-Fellowship, K. U. Dharwad, No. KU/Sch/UGC-UPE/2014-15/897, dated: 24 Nov 2014. #### REFERENCES - 1. B. Basavanagoud, H. P. Patil, Jaishri B. Veeragoudar, On the block-transformation graphs, graph equations and diameters, International Journal of Advances in Science and Technology 2(2)(2011), 62-74. - 2. B. Basavanagoud, V. R. Kulli, Hamiltonian and eulerian properties of plick graphs. The Mathematics Student, 73(2005), 175-181. - 3. B. Basavanagoud, V. R. Kulli, Plick graphs with crossing number 1. International Journal of Mathematical Combinatorics 1(2011), 21-28. - 4. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass (1969). - 5. V. R. Kulli, The semitotal-block graph and the total-block graph of a graph, J. Pure and Appl. Math. 7(1976), 625-630. - 6. V. R. Kulli, The plick graph and the qlick graph of a graph, Graph Theory Newsletter 15(1986). - 7. V. R. Kulli, B. Basavanagoud, Characterization of planar plick graphs, Discussiones Mathematicae, Graph theory 24(2004), 41-45. - 8. V. R. Kulli, M. S. Biradar, Point block graphs and crossing numbers, Acta Ciencia Indica, 33(2)(2007), 637-640. - 9. V. R. Kulli, M. S. Biradar, The point-block graph of a graph, J. of Computer and Mathematical Sci. 5(5)(2014), 476-481. - 10. Van Rooji A C M, Wilf H S, The interchange graph of a finite graph, Acta Mate. Acad. Sci. Hungar 16(1965), 163-169. - 11. B. Wu, J. Meng, Basic properties of total transformation graphs, J. Math. Study, 34(2001), 109-116. - 12. B. Wu, X. Gao, Diameters of jump graphs and self complementary jump graphs, Graph Theory Notes of New York, 40(2001), 31-34. Source of Support: UGC-MRP, New Delhi, India: F.No.41-784/2012, Conflict of interest: None Declared [Copy right © 2015, RJPA. All Rights Reserved. This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]