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ABSTRACT

In this paper, we introduce a new class of algebras K,, which we call 2-knot symmetric algebras. The reason for this
name is that these new algebras have a basis consisting of knot diagrams. The multiplication of two of these graphs
turns K, into an associative algebra. By making use of conditional expectation and proving the non-degeneracy of the
trace, we and also prove the semi simplicity of these algebras over K, (x).
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INTRODUCTION

Brauer [1] introduced certain algebras, known as Brauer’s algebras, in connection with the problem of the

decomposition of a tensor product representation into irreducible. These algebras have a basis consisting of undirected
graphs. WenzI[2] obtained the structure of Bauer algebras D,.; by making use of conditional expectations and by an

inductive procedure from the structures of D,, and D,.. Parvathi and Kamaraj [3] introduced signed Brauer’s algebras,
which have a basis consisting of signed diagrams. Kamaraj and Mangayarkarasi [4] introduced knot diagrams using

Brauer graphs without horizontal edges. They used only two types of knot. We are motivated by the above to introduce
a new multiplication among the generators of 2-knot multiplication. We call these 2-knot symmetric algebras, and we
also prove the semisimplicity of K.

1. PRELIMINARIES

We state the basic definitions and some known results that will be used in this paper.

1.1 Brauer algebras

Definition [1] A Brauer graph is a graph on 2n vertices with n edges, the vertices being arranged in two rows and each
row consisting of n vertices, and every vertex is the vertex of only one edge.

1.2 Definition [1], [2]

Define the Brauer Algebra D, over the field of rational functions € (x) as follows.
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Forn=0 let Dy = C(x). Forn > 0, a linear basis of the € (x) algebra D, is given by the graphs with n edges and
2n vertices, arranged in two lines of n vertices each. In these graphs each edge belongs to exactly two vertices and each
vertex belongs to exactly one edge. Two examples for graphs in D 4 are

. —8 ] -
a= —
[ S . ] .
[ . L ] .
., J—
b= e
<
[ ] .

It is easy to see that we have 2n — 1 possibilities for joining the first vertex with another one, then 2n — 3
possibilities for joining the next one, and so on. So the dimension of D, is (2n —1).(2n — 3)...3.1. To define
multiplication in Dy, it is enough to define the product a b for two graphs a and b. This is done in a similar way as for

braids, by the following rules.
1. Draw b below a.
2. Connect the i-th upper vertex of b with the i-th lower vertex of a.

3. Let d be the number of cycles in the graph obtained in 2, and let ¢ be this graph without the cycles. Then we

definea.b = x%.¢

Example:

1.3 Signed Brauer algebras [3]

A signed diagram is a Brauer graph in which every edge is labeled by a + or - sign.

T T

1.4 Definition [3]:Let V_ndenote the set of all singed Brauer graphs on 2n vertices with n singed edges.LetD_n(X)

denote the linear span of V_nwhere X'is an indeterminate. The dimension of Dn (X) is 2" (2n)! =2" (2n-1)(2n -
3)...3.1.Let5,5 e\/_n .Since a, b are Brauer graphs, ab = Xdc, the only thing we have to do is to assign a direction

for every edge. An edge « in the product ak_)will be labeled as a + or a- sign according as the number of negative

edges involved froma and b to make a is even or odd. A loop /3 is said to be a positive or a negative loop inab

according as the number of negative edges involved in the loop is even or odd. Then ab= X2dl+dz where d; is the
number of positive loops and d, is the number of negative loops. Then is a finite dimensional algebra.
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1.5 Knot Graphs [4]

Let S, be the symmetric group of order n, and & = S,,. A knot graph of order n is a special graph which is defined from
m as follows.

1.5 Definition [4]

Let n€ S,, then & can be represented by a graph, which is called the Brauer diagram. Consider two edges (i ,n(i)) and

(j, m(j)), where the vertices i and j are in the upper row and =n(i) and n(j) are in the lower row.

Ifi<j and (i) < 1(j), then edges are drawn in two cases as shown below.

1 2 3 i j n

[ ] (] [ ] LI . ,I L [ ]
case 1: A \ ,'/
\\\

. . . ¢+ e J \i . e .

1 2 3 () (i) n

In case 1, (i,7T(1)) is the upper edge and (j, T(j)) is the lower edge. It can also be said that the edge (j, T(f)) is lower

than the edge (i, T(1)).

1 2 3 i i
[ ] [ ] [ ] . s 0w . [ ] 'Y []
by \ /’
Case 2: N /
/ ’ \‘\
. . ® .4 . . .
1 2 3 7(J) (i) n

In case 2, the edge (j, 7 (j)) is higher than (i , (), or (i, (1)) is lower than (j, 7 (j)). The above graph is called a

knot graph of order n.
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2. 2-KNOT SYMMETRIC ALGEBRAS

Notations: Let F denote a field and F(x) be the field of fractions, where x is indeterminate. Let S, be the symmetric

group of order nand let 7 € S,. Then 7 can be represented as a graph in which the vertices of 7z are represented in
two rows such that each row contains n vertices. The vertices of each row are indexed by 1,2...n from left to right in
order. Let E(7Z’) denote the set of all edges of .

ie. E(7)={ej = (i, z(i));1<i<n}

Define A, ={aij = (g, ej); i< J}
B, :{bij = ajj; 7Z'(|)<7Z'(J)}
2.1 Remark

Let R, denote the collection of all symmetric knot graphs of order n derived from 77

Let K, = UR,

TESH

2.2 Remark: Let o,z € Sy, . For the edge ; = (i,0.7(i)) € E(o - 77) there are edges o = (i, (i) € E(7)

and i = (7(i),o.7z(i)) € E(o)

2.3 Multiplication in K

We have introduced 2-knot multiplication among knot graphs in K, . Now we define a product among the elements in

Kp.

2.4 Definition: Let &, b be elements in Kn(x). The product of two diagrams @ and b of n vertices is determined by

putting the diagram @ at the top and b below. The vertices of @ and b will be as shown below:

2z n

. . veu . - . e -
[ —

[ ] [ ] [ ] L ] L ]

1 F] - n

1 2 =)

- L] - - -
=

- L] - L] -

1 2 exi | n

Let@ € Ky and b € K, then the product @b € K, ; is one of the cases mentioned below.

Case-1:
ablyi, 7;)=alai, @;)ob(B} ) (e, )< By
If ¢ is higher (lower) than aj , then (yi, 7 )e B ;. where y; is higher (lower) than 7ij.
(i) If ¢ is higher (lower) than aj and i is higher (lower) than ﬂj , then (yi, yj)e Bo r» Where y;j is
lower (higher) than 7i.

(i) If ¢ is lower (higher) than aj and f; is higher (lower) than ﬂj , then (Vi VY )e Bo .z
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Case-2:

ab(yi,yj):a(ai,aj)ob(ﬂi,,ﬁj); (Oli,aj)éB”
If 5 is higher (lower) than ﬂj , then (}/i,yj)g B, where yj is higher (lower) than 7.

2.5 Remark: Let o,7,0 € Sy, . For theedge 733 = (i, 5.((7.7[) (i ))e E(5 . (O‘.ﬂ')), there are corresponding edges:

ai =(i, z())<E(z). fi=(z(i)ox(i)cE(o)ri=(0-7(i) 5(ox(i)) E(©)
Let p; =(i, o.z(i))eE(o.7), & =(z(i)5.0.7(i)) e E(5.0)

2.6 Theorem: If a,b,and ¢ are elements in K (x), then (ab]c = a(b CJ.

Proof: Let ae K, ,be K and c e K5, where 7,0, € Sp,.

Claim: [ach = a(b C]
ai,(xj )E B”,

Case-1: Let( where
(7i’7j)€ Bs, where y; is higher than y ;.

@j is higher than «j, (,Bj,ﬂi)e By, where fSjis higher than pi and

E;B(pi,pj):;(ai,aj)og(ﬂj,ﬂi); (pi,pj)e Bier . Where pj is lower than p;.

(;ajc@i,n,->:;5<pi,p,-)-é<n,m)

=;(Ofi,0€j)°g(ﬂj,ﬁi)'g(?/i,ﬂfj); (77i’77j)¢B6.6.,,
Bg(gyfi)zg(ﬁj,ﬂi)°g(7i,;/j); (éj,fi)eBg.G,where &j is lower than &j.

;{5;]% )= ales Q| )'55(51 &)

=<':1(ai,aj)0k~)(ﬂj,ﬂi)°g(7i,7’j); (77i:77j)§1¢ BSeger

Therefore [;B]E = :’{B Ej

Case-2: Let(ai’wj)e B
(ri.7})eBs.

7 where %i 18 higher than o, (,Bj,ﬂi)e By, where Bjis higher than pi and

;B(pi, pj):;(ai,aj)og(ﬂj,ﬂi); (pi, pj)e Bier . Where pj is lower than p;.
0 )<l ol )

:;l(aiaaj)'g(ﬁj’ﬂi)'g(ﬂ’?/j); (ﬂi.ﬂj)e Bseger
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where 77; is lower than 77j-bc(ézjrézi):t;(ﬂj,ﬂi)°g(7i’Vj); (fj,fi)e Bsey + Where & is lower than
Si-

;[BE]Mnj)=a(“i,“j)'55(§j’ égi)
=;1(05i.05j)'6(ﬂj,ﬂi)'g(?/i’?/j)? (ﬂi'”j)e Bseger:

where 77; is lower than 77 .

Therefore L;B]E = ;{B ;]

Case-3: Let(oq,oq)% B, (ﬂi,ﬂj)e B, where fjis higher than /3 and (}/j,)/i)e Bs, where y jis higher
than ;.

;B(pi,pj)=;(ai,aj)06(ﬂi,ﬂj); (pi,pj)e Boer . Where pj is higher than p;.

(aajccn,n,-):;5<pi,p,->-é<yj,yi>

:;(aivaj)'g(ﬂiaﬂj )’E(?/jJ/i); (’7i ) 77j)E BSeger
where 77; is lower than 77.

bols & )=b(g. i) oclriz)i (& & )eBsa, where & istower than £;.

Q(B;J(ﬂi, nj):;(ai,aj)ogg(fi, 5])
:;(ai,aj)°5(ﬂi, ﬁj).;(yj’}/l)’ (ﬂi’ 77])E B5‘007Z’
where 7; is lower than 77;.

Therefore (;15];: = ;{B ;J

Case-d- Let(ai,aj)e B @ is higher than «j, (ﬂj ,ﬁi)g Bs, and (Vj ,yi)e Bs, where yjis lower

than ;.

7’ where

;B(pi,pj):;(ai,aj)og(ﬂj,ﬂi); (pi,pj)e Boesr, Where pj is higher than pj.

o0 b1y} bl oy )e 1)

:;(aix“j)°6(ﬁj:ﬁi)'E(VjJ’i); (77ir77j)¢ BSeger

l;;(fj, é)zg(ﬁj,ﬂi)og(yj,;/i); (é‘j,fi )e Bsey . Where & is lower than &j.
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[yl el )

:a(ai'aj)'g(ﬂj’ﬂi)'g(?/j'?/i); (77i,77j)eE BSeger:

Therefore [;B]E = ;(B EJ

Case-5: Let(Oli’Otj)gE Bz, ('Bi’ﬂj)(7E Bs, and (7/i’7/j)eE Bs-

;E’(Pi’Pj):;(“h“j)";(ﬂi,ﬂj); (,Oi,/?j)e Boer

(;gj;(m,,,,-):%(pi,p,->-5<m,-)
~a(aia)ob(, Ay )ochiri)i (275)2 B,

Bg(é:i,§j)=5(ﬂiaﬂj)°g(7i’7j); (6.£))¢Bse,

;[sa]<m,n,->25<ai,aj>-sé<a,a>

=a(aiyaj)'5(ﬁi,ﬂj )';(ViJ’j); (77i:77j)55 Bseger:
Therefore [;B]E = ;{B Ej
Case-6- Let(ai,aj)e B, (ﬂi,ﬂj)e B, where fiis higher than ﬁj and (}/j,}/i)e Bs.

;B(pi,pj):;(ai,aj)ot;(ﬁi,ﬂj); (pi,pj)e Boer . where pj is higher than pj.

(ggj;@i,n,-):;s(pi,p,->-a<y,-.yi>

:;(aiaaj)°6(ﬁivﬁj)°;(7j'7i); (ﬂi.ﬂj)e Bseser

where 77; is higher than 77;.
E)E(fijj): B(ﬁ, ’ﬁj)’g(?/j , 7i); (fi,cf , )e Bse,, » Where j is higher than &;.

;[BE](ni’nj):;‘(ai’aj)°gg(§iv§j) |

=a(06i,0!j)°5(,3i,ﬂj )°;(7j’7i); (77i,77j)€ Bseger:
where 77; is higher than nj-

Therefore [;B]E = :’{B EJ
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Case-7- Let(ai,aj)e B,;, where ¢;jis higher than aj, (ﬁj,ﬂi)e Bs, and (yj,;/i)g Bs.

;B(pi, pj)zgl(ai,aj)og(ﬂj, ﬂi); (pi, pj)e Bier - Where pj is higher than p;.
(55J5(m,771)=55(pi,pj)°5(7j17i)

:;(ai’aj)'g(ﬂj’ﬂi)'g(VjJ/i); (ﬂi,ﬂj)GBa.g.ﬁ
where 77; is higher than nj-

E)E(fj,fi)zg(ﬂj,ﬂi)tg(}/j,}/i); (fj,fi )e Bse, » Where & is higher than &j.

{be o3l bl )

:;l(aiaaj)°6<ﬁjyﬁi)‘g(ﬂ/jaﬂ/i); (ﬂiyﬂj)EB(s.g.ﬂ,
where 77; is higher than 7j-

Therefore (;15];: = ;{B ;J

Case-8: Let(ai,aj)g B, (ﬂi,ﬂj)g B, and (yi,;/j)e Bs . where yj is higher than Vi
;B(Pi:Pj)=;(ai'aj)°6(ﬂivﬂj); (pi’pj)gBaw
o0 b )= ablo, o)

:;(ahaj)‘g(ﬂi’ﬂj)’g(ﬁ’i’ﬂ’j); (ﬂhﬂj)eBa-a.ﬁ
where 77; is higher than 77;.

E)E(fi, fj):g(ﬁi,ﬂj)og(}/i, 7]); (ggi, §j )e Bse,, . Where j is higher than &;.
;[55](%ﬂj)=;(ai’aj)'55(§iv§j)

=;1(06i.06j)°5(ﬂiyﬂj)'g(ﬂ/i,?/j); (ﬂi,ﬂj)EBaoa.ﬁ'
where 77; is higher than 77;.

Therefore L;B]E = ;(B ;J

Similarly for the lower edges in [ab] €= a(b CJ

thus proving the associativity of the algebra.
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2.7 Result: The free algebra generated by Rn over F(x) is called a 2-knot symmetric algebra. It is denoted by Kn

3. SEMISIMPLICITY OF K,

To define conditional expectation, we first prove the following cases. Let €,_1 € D, ,beK,, 7 €S,

Case-1: Let be K,,_sand (¢, @, 4) ¢ B, where ;= (i,n-1),c,; =(n-1, j)

1 2 i 5 n—-1
. o P e - .
Ep-1 =
L] — @
1 2 ; i n-1 n
1 -1

(] (]
1 2 n-1 n
1 2 i 5 n-1 n
(] - »
1 = I
(] [ —
1 2 n-1 n

The product ofe,,_1be,_1 = x? be,_jwhereb’ = x2b

(e (0) = -5 ()b

Case-2: Let b e Kp_pand (¢, 4)€ B, wherer; = (i,n —1),¢, ; =(N—1, j) a;islower than ¢

L e e O

The product ofe,,_jbe,_; = x*b"e,_jwhereb’ =x*b"
1 14 14
(e 0) = L (cb) =5

X2

Case-3: Let be Kp_pand (@, 4)€ B, wherea; = (i,n-1),a, ; =(n—1, j) «;ishigher than
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&1 =
[ ]
1 2
1 2
[ ] [ .
b _
[ ] [ L]
1 2
1 2
]
ep1 =
[ ]
1 2

The product of e,,_qbe,_1 =be,_1 where b =b

(e b)) =5 0)

3.1 Definition: Define &,_1: Kp_1 = Kp_2as follows: for every b e K, , there exists b'e K, o€ S;,_»

: b’
such that e, ;be, ; =be, ; . Nowwe define &,,(b) =— .
X

3.2 Definition: A trace tr :K,,_q — F(Xx) is defined inductively by:
(). tr(1) = 1

(ii). tr(b)=tr(g,_, (b)) = tr()k:—;)
3.3 Notation: A, ={tr(b) :be Ky}

3.4 Example for trace of Ko
tr:Ko > F(x)

If by, b,, by are the generators of Ko where by,by,b3e K, & 7€ S,

Case-1: To compute €,b,€, where ey € Ky & (o ap) ¢ B,
e,b e, =b"e, where b'=1€S,

(e b)) =5 ()=

tr(by) =tr(s,a (b)) = tr()) =1

Case-2: To compute €,b,€, where ey € Ky & (g arp) € B and @; is lower than @,
eosboe, = x4 b"e,, where b’ = x*p”

(£,4(b,)) = X—lz(x4b") = x?,whereb"=1€S,

tr(by) =tr(en_y(by)) = tr(x?) = x
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Case-3: To compute €,b,€, where €5 € Ko & (o @) € B, and @y is higher than a;
eobge, =b ey, whereb'=1e §;

(en_(b3)) = Xiz

tr(bg) = tr(zn1(b3)) = tr[x%} Xiz

Hence Ay ={1, X2, iz}
X

3.5 Theorem: tr :K_1 = F(X),if {b;,b,,b;,... b, } are generators of K_1 , then

a1 1
{tr(b,), tr(b,), ..tr(b, )} ={1, x?, x*.. x> = W}

Proof: Let us prove the theorem by induction on ‘n’
1
Forn=2,thatis Ay ={1, X2, —2}
X
Hence the result is true for n=2.

Let us assume that the result is true for n=k.

Hence A ={tr(b):be Ky}

. 2 4 J2k-1) 1 1
Thatis {1, X, X"...X 2 , ""—XZ(k—l)}

For n =k+1
Acp={tr(b):be Ky i1}

Case-1: Let b e Ky and (¢tj, arg41) & B, wherer € S,
e =b'ex 1,0 € Sp
&k+1° K1 = F(X)

(eks () = Xiz(xzb') b
tr(b) = t'r(.ekﬂ(b)) = tr(b") where tr(b") € A,

1

4 2« 1 1.
K22k

Thatis tr(b) e{L, x2, x*..x

Case-2: Let b e Ky and (¢, @,,4) € B, ,where 7 € S, and «; is lower than @44
ekr1b=Dh"ey1,0"€ Sy

(k1 )= —5(0)
X

tr(b) =tr(ey .1 (b)) = tr(b) =tr(5) = —tr(B) =L, X%, x*..x2KD, 2
X X X

1 1

S}
X2 X2k

{1, x2, x4..x%K
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Case-3: Let b e Ky and (¢, @,,4) € B, ,where 7 € S, and «; is lower than @41
ekr1b=Dh"ey1,0"€ Sy

(511 () = — (D7) = X2 b
X

tr(b) =tr(ey ,1(b)) = tr(x20’) = x2tr(b") = x2tr(b) = x2{L, x2, x*..x2k-"D), —12 ST i o=
X X ( _)
1 1
{1, x2, x4...x2k, e
X2 X2k

Hence the result is true for n= k+1.

By the induction hypothesis, the theorem is true for all n.

3.6. Theorem: tr :K,,(X) = F(X) is non-degenerate.
Let X = z&ibi ,{b; } be the basis of Kj,; 4; € F(x)

tr(XY) =I0 forall y € Ky, (X). Inparticular tr(Xb;) =0 for all ]
tr(z/”tibibj} =0
i
(Zlitr(bibj )J =0
i
Put K =tr(bjbj) & Q¢ (x) = det(K) s a non-zero polynomial.
Hence 4; = Ofor all i, which implies X = 0.

3.7 Theorem: The generalized knot symmetric algebra K, (X) is semisimple.

Proof: Since the trace is non-degenerate, by the above theorem the algebra K, (X) is semisimple.
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