# 2-KNOT SYMMETRIC ALGEBRAS 

*R. SELVARANI AND ${ }^{1}$ M. KAMARAJ<br>*Department of Mathematics, K.L.N. College of Engineering, Pottapalayam-630612, Sivagangai District, Tamilnadu, India.<br>${ }^{1}$ Department of Mathematics, Government Arts and Science College, Sivakasi-626124, Viruthunagar District, Tamilnadu, India.

(Received On: 02-05-15; Revised \& Accepted On: 18-05-15)


#### Abstract

In this paper, we introduce a new class of algebras $K_{n}$, which we call 2-knot symmetric algebras. The reason for this name is that these new algebras have a basis consisting of knot diagrams. The multiplication of two of these graphs turns $K_{n}$ into an associative algebra. By making use of conditional expectation and proving the non-degeneracy of the trace, we and also prove the semi simplicity of these algebras over $K_{n}(x)$.


Keywords: Multiplication in $K_{n}$, Brauer algebra, knot graphs, semi simple.

## INTRODUCTION

Brauer [1] introduced certain algebras, known as Brauer's algebras, in connection with the problem of the decomposition of a tensor product representation into irreducible. These algebras have a basis consisting of undirected graphs. Wenzl[2] obtained the structure of Bauer algebras $D_{n+1}$ by making use of conditional expectations and by an inductive procedure from the structures of $D_{n-1}$ and $D_{n}$. Parvathi and Kamaraj [3] introduced signed Brauer's algebras, which have a basis consisting of signed diagrams. Kamaraj and Mangayarkarasi [4] introduced knot diagrams using Brauer graphs without horizontal edges. They used only two types of knot. We are motivated by the above to introduce a new multiplication among the generators of 2-knot multiplication. We call these 2-knot symmetric algebras, and we also prove the semisimplicity of $K_{n}$.

## 1. PRELIMINARIES

We state the basic definitions and some known results that will be used in this paper.

### 1.1 Brauer algebras

Definition [1] A Brauer graph is a graph on $2 n$ vertices with $n$ edges, the vertices being arranged in two rows and each row consisting of $n$ vertices, and every vertex is the vertex of only one edge.


### 1.2 Definition [1], [2]

Define the Brauer Algebra $D_{n}$ over the field of rational functions $C(x)$ as follows.

[^0]For $\mathrm{n}=0$ let $D_{0}=C(x)$. For $n>0$, a linear basis of the $C(x)$ algebra $D_{n}$ is given by the graphs with n edges and 2 n vertices, arranged in two lines of n vertices each. In these graphs each edge belongs to exactly two vertices and each vertex belongs to exactly one edge. Two examples for graphs in $D_{4}$ are


It is easy to see that we have $2 n-1$ possibilities for joining the first vertex with another one, then $2 n-3$ possibilities for joining the next one, and so on. So the dimension of $D_{n}$ is $(2 n-1) \cdot(2 n-3) \ldots 3.1$. To define multiplication in $D_{n}$, it is enough to define the product a b for two graphs a and b . This is done in a similar way as for braids, by the following rules.

1. Draw b below a.
2. Connect the i-th upper vertex of $b$ with the i-th lower vertex of a.
3. Let d be the number of cycles in the graph obtained in 2 , and let c be this graph without the cycles. Then we define $a \cdot b=x^{d} \cdot c$

## Example:



### 1.3 Signed Brauer algebras [3]

A signed diagram is a Brauer graph in which every edge is labeled by a + or - sign.

1.4 Definition [3]:Let $\overline{V_{n}}$ denote the set of all singed Brauer graphs on 2 n vertices with n singed edges.Let $\overline{D_{n}}(x)$ denote the linear span of $\overline{V_{n}}$ where $X$ is an indeterminate. The dimension of $\overline{D_{n}}(x)$ is $2^{\mathrm{n}}(2 \mathrm{n})!=2^{\mathrm{n}}(2 \mathrm{n}-1)(2 \mathrm{n}-$ 3)...3.1.Let $\bar{a}, \bar{b} \in \overline{V_{n}}$. Since a, b are Brauer graphs, $a b=x^{d} c$, the only thing we have to do is to assign a direction for every edge. An edge $\alpha$ in the product $\bar{a} \bar{b}$ will be labeled as a + or a- sign according as the number of negative edges involved from $\bar{a}$ and $\bar{b}$ to make $\alpha$ is even or odd. A loop $\beta$ is said to be a positive or a negative loop in $\bar{a} \bar{b}$ according as the number of negative edges involved in the loop is even or odd. Then $\bar{a} \bar{b}=x^{2 d_{1}+d_{2}}$ where $\mathrm{d}_{1}$ is the number of positive loops and $\mathrm{d}_{2}$ is the number of negative loops. Then is a finite dimensional algebra.


### 1.5 Knot Graphs [4]

Let $S_{n}$ be the symmetric group of order $n$, and $\pi \in S_{n}$. A knot graph of order $n$ is a special graph which is defined from $\pi$ as follows.

### 1.5 Definition [4]

Let $\pi \in \mathrm{S}_{\mathrm{n}}$, then $\pi$ can be represented by a graph, which is called the Brauer diagram. Consider two edges (i, $\pi(\mathrm{i})$ ) and $(\mathrm{j}, \pi(\mathrm{j}))$, where the vertices i and j are in the upper row and $\pi(\mathrm{i})$ and $\pi(\mathrm{j})$ are in the lower row.

If $\mathrm{i}<\mathrm{j}$ and $\pi(i)<\pi(j)$, then edges are drawn in two cases as shown below.
case 1:


In case 1 , $(\mathrm{i}, \pi(i))$ is the upper edge and $(\mathrm{j}, \pi(j))$ is the lower edge. It can also be said that the edge $(\mathrm{j}, \pi(j))$ is lower than the edge (i, $\pi(i)$ ).


In case 2 , the edge $(\mathrm{j}, \pi(j)$ ) is higher than (i, $\pi(i)$ ), or ( $\mathrm{i}, \pi(i)$ ) is lower than $(\mathrm{j}, \pi(j)$ ). The above graph is called a knot graph of order n.

## 2. 2-KNOT SYMMETRIC ALGEBRAS

Notations: Let F denote a field and $\mathrm{F}(\mathrm{x})$ be the field of fractions, where x is indeterminate. Let $S_{n}$ be the symmetric group of order n and let $\pi \in S_{n}$. Then $\pi$ can be represented as a graph in which the vertices of $\pi$ are represented in two rows such that each row contains $n$ vertices. The vertices of each row are indexed by $1,2 \ldots \mathrm{n}$ from left to right in order. Let $E(\pi)$ denote the set of all edges of $\pi$.
i.e. $E(\pi)=\left\{e_{i}=(i, \pi(i)) ; 1 \leq i \leq n\right\}$

Define $A_{\pi}=\left\{a_{i j}=\left(e_{i}, e_{j}\right) ; i<j\right\}$
$B_{\pi}=\left\{b_{i j}=a_{i j} ; \quad \pi(i)<\pi(j)\right\}$

### 2.1 Remark

Let $R_{\pi}$ denote the collection of all symmetric knot graphs of order n derived from $\pi$
Let $K_{n}=\bigcup_{\pi \in S_{n}} R_{\pi}$
2.2 Remark: Let $\sigma, \pi \in S_{n}$. For the edge $\gamma_{i}=(i, \sigma \cdot \pi(i)) \in E(\sigma \cdot \pi)$ there are edges $\alpha_{i}=(i, \pi(i)) \in E(\pi)$ and $\beta_{i}=(\pi(i), \sigma . \pi(i)) \in E(\sigma)$

### 2.3 Multiplication in $\mathbf{K}_{\mathbf{n}}$

We have introduced 2-knot multiplication among knot graphs in $K_{n}$. Now we define a product among the elements in $K_{n}$.
2.4 Definition: Let $\widetilde{a}$, $\check{b}$ be elements in $K_{n}(x)$. The product of two diagrams $\tilde{a}$ and $\widetilde{b}$ of n vertices is determined by putting the diagram $\tilde{a}$ at the top and $\tilde{b}$ below. The vertices of $\tilde{a}$ and $\tilde{b}$ will be as shown below:


Let $\tilde{a} \in K_{\pi}$ and $\tilde{b} \in K_{\sigma}$, then the product $\tilde{a} \tilde{b} \in K_{\sigma . \pi}$ is one of the cases mentioned below.

## Case-1:

$\tilde{a} \tilde{b}\left(\gamma_{i}, \gamma_{j}\right)=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{j}, \beta_{i}\right) ; \quad\left(\alpha_{i}, \alpha_{j}\right) \in B_{\pi}$
If $\alpha_{i}$ is higher (lower) than $\alpha_{j}$, then $\left(\gamma_{i}, \gamma_{j}\right) \in B_{\sigma . \pi}$, where $\gamma_{i}$ is higher (lower) than $\gamma_{j}$.
(i) If $\alpha_{i}$ is higher (lower) than $\alpha_{j}$ and $\beta_{i}$ is higher (lower) than $\beta_{j}$, then $\left(\gamma_{i}, \gamma_{j}\right) \in B_{\sigma . \pi}$, where $\gamma_{i}$ is lower (higher) than $\gamma_{j}$.
(ii) If $\alpha_{i}$ is lower (higher) than $\alpha_{j}$ and $\beta_{i}$ is higher (lower) than $\beta_{j}$, then $\left(\gamma_{i}, \gamma_{j}\right) \notin B_{\sigma . \pi}$

## Case-2:

$\tilde{a} \tilde{b}\left(\gamma_{i}, \gamma_{j}\right)=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{i}, \beta_{j}\right) ; \quad\left(\alpha_{i}, \alpha_{j}\right) \notin B_{\pi}$
If $\beta_{i}$ is higher (lower) than $\beta_{j}$, then $\left(\gamma_{i}, \gamma_{j}\right) \notin B_{\sigma . \pi}$, where $\gamma_{i}$ is higher (lower) than $\gamma_{j}$.
2.5 Remark: Let $\sigma, \pi, \delta \in S_{n}$. For the edge $\eta_{i}=(i, \delta \cdot(\sigma \cdot \pi)(i)) \in E(\delta \cdot(\sigma . \pi))$, there are corresponding edges: $\alpha_{i}=(i, \pi(i)) \in E(\pi), \quad \beta_{i}=(\pi(i), \sigma . \pi(i)) \in E(\sigma), \gamma_{i}=(\sigma \cdot \pi(i), \delta .(\sigma . \pi(i))) \in E(\delta)$ Let $\rho_{i}=(i, \quad \sigma . \pi(i)) \in E(\sigma . \pi), \quad \xi_{i}=(\pi(i), \delta . \sigma . \pi(i)) \in E(\delta . \sigma)$
2.6 Theorem: If $\tilde{a}, \tilde{b}$, and $\tilde{c}$ are elements in $K_{n}(x)$, then $(\tilde{a b}) \tilde{c}=\tilde{a}(\tilde{b} \bar{c})$.

Proof: Let $a \in K_{\pi}, b \in K_{\sigma}$ and $c \in K_{\delta}$, where $\pi, \sigma, \delta \in S_{n}$.
Claim: $(\tilde{a b}) \tilde{c}=\tilde{a}(\tilde{b} \tilde{\sim})$
Case-1: Let $\left(\alpha_{i}, \alpha_{j}\right) \in B_{\pi}$, where $\alpha_{i}$ is higher than $\alpha_{j},\left(\beta_{j}, \beta_{i}\right) \in B_{\sigma}$, where $\beta_{j}$ is higher than $\beta_{i}$ and $\left(\gamma_{i}, \gamma_{j}\right) \in B_{\delta}$, where $\gamma_{i}$ is higher than $\gamma_{j}$.
$\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right)=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{j}, \beta_{i}\right) ; \quad\left(\rho_{i}, \rho_{j}\right) \in B_{\sigma \bullet \pi}$, where $\rho_{i}$ is lower than $\rho_{j}$.

$$
\begin{aligned}
(\tilde{a} \tilde{b}) \tilde{c}\left(\eta_{i}, \eta_{j}\right) & =\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) \\
& \sim \\
& \sim a\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{j}, \beta_{i}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \notin B_{\delta} \bullet \sigma \bullet \pi
\end{aligned}
$$

$\tilde{b} \tilde{c}\left(\xi_{j}, \xi_{i}\right)=\tilde{b}\left(\beta_{j}, \beta_{i}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) ; \quad\left(\xi_{j}, \xi_{i}\right) \in B_{\delta \bullet \sigma}$, where $\xi_{j}$ is lower than $\xi_{i}$.
$\tilde{a}(\tilde{b} \tilde{\sim})\left(\eta_{i}, \eta_{j}\right)=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b} \tilde{c}\left(\xi_{j}, \xi_{i}\right)$

$$
=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{j}, \beta_{i}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \notin B_{\delta \bullet \sigma \bullet \pi}
$$

Therefore $(\tilde{a b}) \tilde{c}=\tilde{a}(\tilde{b} \tilde{c})$
Case-2: Let $\left(\alpha_{i}, \alpha_{j}\right) \in B_{\pi}$, where $\alpha_{i}$ is higher than $\alpha_{j},\left(\beta_{j}, \beta_{i}\right) \in B_{\sigma}$, where $\beta_{j}$ is higher than $\beta_{i}$ and $\left(\gamma_{i}, \gamma_{j}\right) \notin B_{\delta}$.
$\underset{a}{a}\left(\rho_{i}, \rho_{j}\right)=\stackrel{\sim}{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{j}, \beta_{i}\right) ; \quad\left(\rho_{i}, \rho_{j}\right) \in B_{\sigma \bullet \pi}$, where $\rho_{i}$ is lower than $\rho_{j}$.

$$
\begin{aligned}
(\tilde{a} \tilde{b}) \tilde{c}\left(\eta_{i}, \eta_{j}\right) & =\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) \\
& \sim \\
& \sim \tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{j}, \beta_{i}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \in B_{\delta \bullet \sigma \bullet \pi}
\end{aligned}
$$

where $\eta_{i}$ is lower than $\eta_{j} \cdot \tilde{b} \tilde{c}\left(\xi_{j}, \xi_{i}\right)=\tilde{b}\left(\beta_{j}, \beta_{i}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) ; \quad\left(\xi_{j}, \xi_{i}\right) \in B_{\delta} \bullet \sigma$, where $\xi_{j}$ is lower than $\xi_{i}$.

$$
\begin{aligned}
\tilde{a}(\tilde{b} c)\left(\eta_{i}, \eta_{j}\right) & =\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b} \tilde{c}\left(\xi_{j}, \xi_{i}\right) \\
& =\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{j}, \beta_{i}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \in B_{\delta \bullet} \cdot{ }_{\bullet},
\end{aligned}
$$

where $\eta_{i}$ is lower than $\eta_{j}$.
Therefore $(\tilde{a b}) \tilde{c}) \tilde{c}=(\tilde{b} \tilde{b})$
Case-3: Let $\left(\alpha_{i}, \alpha_{j}\right) \notin B_{\pi},\left(\beta_{i}, \beta_{j}\right) \in B_{\sigma}$, where $\beta_{i}$ is higher than $\beta_{j}$ and $\left(\gamma_{j}, \gamma_{i}\right) \in B_{\delta}$, where $\gamma_{j}$ is higher than $\gamma_{i}$.
$\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right)=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{i}, \beta_{j}\right) ; \quad\left(\rho_{i}, \rho_{j}\right) \in B_{\sigma \bullet \pi}$, where $\rho_{i}$ is higher than $\rho_{j}$.

$$
\begin{aligned}
(\tilde{a} \tilde{b}) \tilde{c}\left(\eta_{i}, \eta_{j}\right) & =\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) \\
& =\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{i}, \beta_{j}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \in B_{\delta \bullet \sigma \bullet \pi}
\end{aligned}
$$

where $\eta_{i}$ is lower than $\eta_{j}$.
$\tilde{b} \tilde{c}\left(\xi_{i}, \xi_{j}\right)=\tilde{b}\left(\beta_{i}, \beta_{j}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) ; \quad\left(\xi_{i}, \xi_{j}\right) \in B_{\delta \bullet \sigma}$, where $\xi_{i}$ is lower than $\xi_{j}$.
$\tilde{a}(\tilde{b} \tilde{c})\left(\eta_{i}, \eta_{j}\right)=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b} \tilde{c}\left(\xi_{i}, \xi_{j}\right)$

$$
=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{i}, \beta_{j}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \in B_{\delta \bullet \sigma \bullet \pi},
$$

where $\eta_{i}$ is lower than $\eta_{j}$.
Therefore $\left(\begin{array}{c}\tilde{a} \tilde{b}) \tilde{c}=\tilde{a}(\tilde{b} \dot{b}), ~\end{array}\right.$
Case-4: Let $\left(\alpha_{i}, \alpha_{j}\right) \in B_{\pi}$, where $\alpha_{i}$ is higher than $\alpha_{j},\left(\beta_{j}, \beta_{i}\right) \notin B_{\sigma}$, and $\left(\gamma_{j}, \gamma_{i}\right) \in B_{\delta}$, where $\gamma_{j}$ is lower than $\gamma_{i}$.
$\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right)=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{j}, \beta_{i}\right) ; \quad\left(\rho_{i}, \rho_{j}\right) \in B_{\sigma \bullet \pi}$, where $\rho_{i}$ is higher than $\rho_{j}$.

$$
\begin{aligned}
&\left(\begin{array}{c}
\tilde{a} \tilde{b}) \tilde{c}\left(\eta_{i}, \eta_{j}\right)
\end{array}\right)=\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) \\
&=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{j}, \beta_{i}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \notin B_{\delta} \bullet \sigma \bullet \pi \\
& \tilde{b} \tilde{c}\left(\xi_{j}, \xi_{i}\right)=\tilde{b}\left(\beta_{j}, \beta_{i}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) ; \quad\left(\xi_{j}, \xi_{i}\right) \in B_{\delta \bullet \sigma}, \text { where } \xi_{j} \text { is lower than } \xi_{i} .
\end{aligned}
$$

$$
\begin{aligned}
\tilde{a}(\tilde{\sim} \tilde{c})\left(\eta_{i}, \eta_{j}\right) & =\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b} \tilde{c}\left(\xi_{j}, \xi_{i}\right) \\
& =\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{j}, \beta_{i}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \notin B_{\delta \bullet \sigma \bullet \pi}
\end{aligned}
$$

Therefore $(\tilde{a b}) \tilde{c}=\tilde{a}(\tilde{b} \bar{c})$
Case-5: Let $\left(\alpha_{i}, \alpha_{j}\right) \notin B_{\pi},\left(\beta_{i}, \beta_{j}\right) \notin B_{\sigma}$, and $\left(\gamma_{i}, \gamma_{j}\right) \notin B_{\delta}$.
$\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right)=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{i}, \beta_{j}\right) ; \quad\left(\rho_{i}, \rho_{j}\right) \notin B_{\sigma \bullet \pi}$

$$
\begin{aligned}
&(\tilde{a} \tilde{b}) \tilde{c}\left(\eta_{i}, \eta_{j}\right)=\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) \\
&=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{i}, \beta_{j}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \notin B_{\delta \bullet \sigma \bullet \pi} \\
& \tilde{b} \tilde{c}\left(\xi_{i}, \xi_{j}\right)=\tilde{b}\left(\beta_{i}, \beta_{j}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) ; \quad\left(\xi_{i}, \xi_{j}\right) \notin B_{\delta \bullet \sigma} \\
& \tilde{a}(\tilde{b} \tilde{c})\left(\eta_{i}, \eta_{j}\right)=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b} \tilde{c}\left(\xi_{i}, \xi_{j}\right) \\
&=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{i}, \beta_{j}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \notin B_{\delta \bullet \sigma \bullet \pi}
\end{aligned}
$$

Therefore $\binom{\sim}{a b} \tilde{c}=\tilde{a}(\tilde{b} \sim)$
Case-6: Let $\left(\alpha_{i}, \alpha_{j}\right) \notin B_{\pi},\left(\beta_{i}, \beta_{j}\right) \in B_{\sigma}$, where $\beta_{i}$ is higher than $\beta_{j}$ and $\left(\gamma_{j}, \gamma_{i}\right) \notin B_{\delta}$.
$\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right)=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{i}, \beta_{j}\right) ; \quad\left(\rho_{i}, \rho_{j}\right) \in B_{\sigma \bullet \pi}$, where $\rho_{i}$ is higher than $\rho_{j}$.

$$
\begin{aligned}
(\tilde{a} \tilde{b}) \tilde{c}\left(\eta_{i}, \eta_{j}\right) & =\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) \\
& =\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{i}, \beta_{j}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \in B_{\delta \bullet \sigma \bullet \pi}
\end{aligned}
$$

where $\eta_{i}$ is higher than $\eta_{j}$.
$\tilde{b} \tilde{c}\left(\xi_{i}, \xi_{j}\right)=\tilde{b}\left(\beta_{i}, \beta_{j}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) ; \quad\left(\xi_{i}, \xi_{j}\right) \in B_{\delta} \bullet_{\sigma}$, where $\xi_{i}$ is higher than $\xi_{j}$.
$\tilde{a}(\tilde{b} c)\left(\eta_{i}, \eta_{j}\right)=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b} c\left(\xi_{i}, \xi_{j}\right)$

$$
=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{i}, \beta_{j}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \in B_{\delta \bullet \sigma \bullet \pi},
$$

where $\eta_{i}$ is higher than $\eta_{j}$.
Therefore $\left(\begin{array}{c}\tilde{a} \tilde{b}) \tilde{c}=\tilde{a}(\tilde{b} \tilde{c}), ~(1)\end{array}\right.$

Case-7: Let $\left(\alpha_{i}, \alpha_{j}\right) \in B_{\pi}$, where $\alpha_{i}$ is higher than $\alpha_{j},\left(\beta_{j}, \beta_{i}\right) \notin B_{\sigma}$, and $\left(\gamma_{j}, \gamma_{i}\right) \notin B_{\delta}$. $\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right)=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{j}, \beta_{i}\right) ; \quad\left(\rho_{i}, \rho_{j}\right) \in B_{\sigma \bullet \pi}$, where $\rho_{i}$ is higher than $\rho_{j}$.

$$
\begin{aligned}
(\tilde{a} \tilde{b}) \tilde{c}\left(\eta_{i}, \eta_{j}\right) & =\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) \\
& =\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{j}, \beta_{i}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \in B_{\delta \bullet \sigma \bullet \pi}
\end{aligned}
$$

where $\eta_{i}$ is higher than $\eta_{j}$.
$\tilde{b} \tilde{c}\left(\xi_{j}, \xi_{i}\right)=\tilde{b}\left(\beta_{j}, \beta_{i}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) ; \quad\left(\xi_{j}, \xi_{i}\right) \in B_{\delta} \bullet \sigma$, where $\xi_{j}$ is higher than $\xi_{i}$.
$\tilde{a}(\tilde{b} c)\left(\eta_{i}, \eta_{j}\right)=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b} \tilde{c}\left(\xi_{j}, \xi_{i}\right)$

$$
=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{j}, \beta_{i}\right) \bullet \tilde{c}\left(\gamma_{j}, \gamma_{i}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \in B_{\delta \bullet \sigma \bullet \pi}
$$

where $\eta_{i}$ is higher than $\eta_{j}$.
Therefore $(\tilde{a b}) \tilde{c}=\tilde{a}(\tilde{b} \dot{c})$
Case-8: Let $\left(\alpha_{i}, \alpha_{j}\right)_{\notin B_{\pi}},\left(\beta_{i}, \beta_{j}\right) \notin B_{\sigma}$, and $\left(\gamma_{i}, \gamma_{j}\right) \in B_{\delta}$, where $\gamma_{i}$ is higher than $\gamma_{j}$,
$\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right)=\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{i}, \beta_{j}\right) ; \quad\left(\rho_{i}, \rho_{j}\right) \notin B_{\sigma \bullet \pi}$

$$
\begin{aligned}
(\tilde{a} \tilde{b}) \tilde{c}\left(\eta_{i}, \eta_{j}\right) & =\tilde{a} \tilde{b}\left(\rho_{i}, \rho_{j}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) \\
& =\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{i}, \beta_{j}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \in B_{\delta} \bullet \sigma \bullet \pi
\end{aligned}
$$

where $\eta_{i}$ is higher than $\eta_{j}$.
$\tilde{b} \tilde{c}\left(\xi_{i}, \xi_{j}\right)=\tilde{b}\left(\beta_{i}, \beta_{j}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) ; \quad\left(\xi_{i}, \xi_{j}\right) \in B_{\delta \bullet \sigma}$, where $\xi_{i}$ is higher than $\xi_{j}$.

$$
\begin{aligned}
\tilde{a}(\tilde{b} \tilde{c})\left(\eta_{i}, \eta_{j}\right) & =\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b} \tilde{c}\left(\xi_{i}, \xi_{j}\right) \\
& =\tilde{a}\left(\alpha_{i}, \alpha_{j}\right) \bullet \tilde{b}\left(\beta_{i}, \beta_{j}\right) \bullet \tilde{c}\left(\gamma_{i}, \gamma_{j}\right) ; \quad\left(\eta_{i}, \eta_{j}\right) \in B_{\delta \bullet \sigma \bullet \pi}
\end{aligned}
$$

where $\eta_{i}$ is higher than $\eta_{j}$.
Therefore $(\tilde{a b}) \tilde{c}) \tilde{c}(\tilde{a}(\underline{b})$
Similarly for the lower edges in $(\tilde{a} \tilde{b}) \tilde{c}=\tilde{a}(\tilde{b} \tilde{c})$,
thus proving the associativity of the algebra.
2.7 Result: The free algebra generated by $R_{n}$ over $F(x)$ is called a 2-knot symmetric algebra. It is denoted by $K_{n}$ or $K_{n}(x)$.

## 3. SEMISIMPLICITY OF K ${ }_{n}$

To define conditional expectation, we first prove the following cases. Let $e_{n-1} \in D_{n}, b \in K_{\pi}, \quad \pi \in S_{n-1}$
Case-1: Let $b \in K_{n-2}$ and $\left(\alpha_{i}, \alpha_{n-1}\right) \notin B_{\pi}$, where $\alpha_{i}=(i, n-1), \alpha_{n-1}=(n-1, j)$


The product of $e_{n-1} b e_{n-1}=x^{2} b e_{n-1}$ where $b^{\prime}=x^{2} b$
$\left(\varepsilon_{n-1}(b)\right)=\frac{1}{x^{2}}\left(x^{2} b\right)=b$
Case-2: Let $b \in K_{n-2}$ and $\left(\alpha_{i}, \alpha_{n-1}\right) \in B_{\pi}$, where $\alpha_{i}=(i, n-1), \alpha_{n-1}=(n-1, j) \alpha_{i}$ is lower than $\alpha_{j}$


The product of $e_{n-1} b e_{n-1}=x^{4} b^{\prime \prime} e_{n-1}$ where $b^{\prime}=x^{4} b^{\prime \prime}$
$\left(\varepsilon_{n-1}(b)\right)=\frac{1}{x^{2}}\left(x^{4} b^{\prime \prime}\right)=x^{2} b^{\prime \prime}$
Case-3: Let $b \in K_{n-2}$ and $\left(\alpha_{i}, \alpha_{n-1}\right) \in B_{\pi}$, where $\alpha_{i}=(i, n-1), \alpha_{n-1}=(n-1, j) \alpha_{i}$ is higher than $\alpha_{j}$


The product of $e_{n-1} b e_{n-1}=b e_{n-1} \quad$ where $b^{\prime}=b$
$\left(\varepsilon_{n-1}(b)\right)=\frac{1}{x^{2}}(b)$
3.1 Definition: Define $\varepsilon_{n-1}: K_{n-1} \rightarrow K_{n-2}$ as follows: for every $b \in K_{\pi}$, there exists $b^{\prime} \in K_{\sigma}, \sigma \in S_{n-2}$ such that $e_{n-1} b e_{n-1}=b^{\prime} e_{n-1}$. Now we define $\varepsilon_{n-1}(b)=\frac{b^{\prime}}{x^{2}}$.
3.2 Definition: A trace $\operatorname{tr}: K_{n-1} \rightarrow F(x)$ is defined inductively by:
(i). $\operatorname{tr}(1)=1$
(ii). $\operatorname{tr}(b)=\operatorname{tr}\left(\varepsilon_{n-1}(b)\right)=\operatorname{tr}\left(\frac{b^{\prime}}{x^{2}}\right)$
3.3 Notation: $A_{n}=\left\{\operatorname{tr}(b): b \in K_{n}\right\}$

### 3.4 Example for trace of $K_{2}$

$$
\operatorname{tr}: K_{2} \rightarrow F(x)
$$

If $b_{1}, b_{2}, b_{3}$ are the generators of $K_{2}$ where $b_{1}, b_{2}, b_{3} \in K_{\pi} \& \pi \in S_{2}$

Case-1: To compute $e_{2} b_{1} e_{2}$ where $e_{2} \in K_{2} \&\left(\alpha_{1}, \alpha_{2}\right) \notin B_{\pi}$
$e_{2} b_{1} e_{2}=b^{\prime} e_{2}$, where $b^{\prime}=1 \in S_{1}$
$\left(\varepsilon_{n-1}\left(b_{1}\right)\right)=\frac{1}{x^{2}}\left(x^{2}\right)=1$
$\operatorname{tr}\left(b_{1}\right)=\operatorname{tr}\left(\varepsilon_{n-1}\left(b_{1}\right)\right)=\operatorname{tr}(1)=1$
Case-2: To compute $e_{2} b_{2} e_{2}$ where $e_{2} \in K_{2} \&\left(\alpha_{1}, \alpha_{2}\right) \in B_{\pi}$ and $\alpha_{1}$ is lower than $\alpha_{2}$
$e_{2} b_{2} e_{2}=x^{4} b^{\prime \prime} e_{2}$, where $b^{\prime}=x^{4} b^{\prime \prime}$
$\left(\varepsilon_{n-1}\left(b_{2}\right)\right)=\frac{1}{x^{2}}\left(x^{4} b^{\prime \prime}\right)=x^{2}$, where $^{\prime \prime}=1 \in S_{1}$
$\operatorname{tr}\left(b_{2}\right)=\operatorname{tr}\left(\varepsilon_{n-1}\left(b_{2}\right)\right)=\operatorname{tr}\left(x^{2}\right)=x^{2}$

Case-3: To compute $e_{2} b_{2} e_{2}$ where $e_{2} \in K_{2} \&\left(\alpha_{1}, \alpha_{2}\right) \in B_{\pi}$ and $\alpha_{1}$ is higher than $\alpha_{2}$
$e_{2} b_{3} e_{2}=b e_{2}$, where $b^{\prime}=1 \in S_{1}$
$\left(\varepsilon_{n-1}\left(b_{3}\right)\right)=\frac{1}{x^{2}}$
$\operatorname{tr}\left(b_{3}\right)=\operatorname{tr}\left(\varepsilon_{n-1}\left(b_{3}\right)\right)=\operatorname{tr}\left(\frac{1}{x^{2}}\right)=\frac{1}{x^{2}}$
Hence $A_{2}=\left\{1, x^{2}, \frac{1}{x^{2}}\right\}$
3.5 Theorem: $\operatorname{tr}: K_{n-1} \rightarrow F(x)$, if $\left\{b_{1}, b_{2}, b_{3}, \ldots b_{n}\right\}$ are generators of $K_{n-1}$, then $\left\{\operatorname{tr}\left(b_{1}\right), \operatorname{tr}\left(b_{2}\right), \ldots \operatorname{tr}\left(b_{n}\right)\right\}=\left\{1, x^{2}, x^{4} \ldots x^{2(n-1)}, \frac{1}{x^{2}}, \ldots . \frac{1}{x^{2(n-1)}}\right\}$

Proof: Let us prove the theorem by induction on ' $n$ '
For $\mathrm{n}=2$, that is $A_{2}=\left\{1, x^{2}, \frac{1}{x^{2}}\right\}$
Hence the result is true for $\mathrm{n}=2$.
Let us assume that the result is true for $\mathrm{n}=\mathrm{k}$.

Hence $A_{k}=\left\{\operatorname{tr}(b): b \in K_{k}\right\}$
That is $\left\{1, x^{2}, x^{4} \ldots x^{2(k-1)}, \frac{1}{x^{2}}, \ldots . \frac{1}{x^{2(k-1)}}\right\}$
For $\mathrm{n}=\mathrm{k}+1$
$A_{k+1}=\left\{\operatorname{tr}(b): b \in K_{k+1}\right\}$

Case-1: Let $b \in K_{k}$ and $\left(\alpha_{i}, \alpha_{k+1}\right) \notin B_{\pi}$, where $\pi \in S_{n}$
$e_{k+1} b=b^{\prime} e_{k+1}, b^{\prime} \in S_{n}$
$\varepsilon_{k+1}: K_{k+1} \rightarrow F(x)$
$\left(\varepsilon_{k+1}(b)\right)=\frac{1}{x^{2}}\left(x^{2} b^{\prime}\right)=b^{\prime}$
$\operatorname{tr}(b)=\operatorname{tr}\left(\varepsilon_{k+1}(b)\right)=\operatorname{tr}\left(b^{\prime}\right)$ where $\operatorname{tr}\left(b^{\prime}\right) \in A_{k}$

That is $\operatorname{tr}(b) \in\left\{1, x^{2}, x^{4} \ldots x^{2 k}, \frac{1}{x^{2}}, \ldots . \frac{1}{x^{2 k}}\right\}$
Case-2: Let $b \in K_{k}$ and $\left(\alpha_{i}, \alpha_{n+1}\right) \notin B_{\pi}$, where $\pi \in S_{n}$ and $\alpha_{i}$ is lower than $\alpha_{k+1}$
$e_{k+1} b=b^{\prime} e_{k+1}, b^{\prime} \in S_{n}$
$\left(\varepsilon_{k+1}(b)\right)=\frac{1}{x^{2}}(b)$
$\operatorname{tr}(b)=\operatorname{tr}\left(\varepsilon_{k+1}(b)\right)=\operatorname{tr}\left(b^{\prime}\right)=\operatorname{tr}\left(\frac{1}{x^{2}} b^{\prime}\right)=\frac{1}{x^{2}} \operatorname{tr}(b)=\frac{1}{x^{2}}\left\{1, x^{2}, x^{4} \ldots x^{2(k-1)}, \frac{1}{x^{2}}, \ldots . \frac{1}{x^{2(k-1)}}\right\}=$
$\left\{1, x^{2}, x^{4} \ldots x^{2 k}, \frac{1}{x^{2}}, \ldots . \frac{1}{x^{2 k}}\right\}$

Case-3: Let $b \in K_{k}$ and $\left(\alpha_{i}, \alpha_{n+1}\right) \notin B_{\pi}$, where $\pi \in S_{n}$ and $\alpha_{i}$ is lower than $\alpha_{k+1}$
$e_{k+1} b=b^{\prime} e_{k+1}, b^{\prime} \in S_{n}$
$\left(\varepsilon_{k+1}(b)\right)=\frac{1}{x^{2}}\left(x^{4} b^{\prime \prime}\right)=x^{2} b^{\prime}$
$\operatorname{tr}(b)=\operatorname{tr}\left(\varepsilon_{k+1}(b)\right)=\operatorname{tr}\left(x^{2} b^{\prime}\right)=x^{2} \operatorname{tr}\left(b^{\prime}\right)=x^{2} \operatorname{tr}(b)=x^{2}\left\{1, x^{2}, x^{4} \ldots x^{2(k-1)}, \frac{1}{x^{2}}, \ldots \cdot \frac{1}{x^{2(k-1)}}\right\}=$
$\left\{1, x^{2}, x^{4} \ldots x^{2 k}, \frac{1}{x^{2}}, \ldots \frac{1}{x^{2 k}}\right\}$
Hence the result is true for $\mathrm{n}=\mathrm{k}+1$.
By the induction hypothesis, the theorem is true for all n.
3.6. Theorem: $\operatorname{tr}: K_{n}(x) \rightarrow F(x)$ is non-degenerate.

Let $X=\sum_{i} \lambda_{i} b_{i},\left\{b_{i}\right\}$ be the basis of $K_{n} ; \lambda_{i} \in F(x)$
$\operatorname{tr}(X Y)=0$ for all $y \in K_{n}(x)$. In particular $\operatorname{tr}\left(X b_{j}\right)=0$ for all $j$
$\operatorname{tr}\left(\sum_{i} \lambda_{i} b_{i} b_{j}\right)=0$
$\left(\sum_{i} \lambda_{i} \operatorname{tr}\left(b_{i} b_{j}\right)\right)=0$
Put $K=\operatorname{tr}\left(b_{i} b_{j}\right) \& Q_{f}(x)=\operatorname{det}(K)$ is a non-zero polynomial.

Hence $\lambda_{i}=0$ for all i , which implies $\mathrm{X}=0$.
3.7 Theorem: The generalized knot symmetric algebra $K_{n}(x)$ is semisimple.

Proof: Since the trace is non-degenerate, by the above theorem the algebra $K_{n}(x)$ is semisimple.

## ACKNOWLEDGEMENT

The authors would like to express their sincere thanks to the referee for his useful comments and suggestions.

## REFERENCES

1. R. Brauer, "Algebras which are connected with semisimple continuous groups", Annals of Mathematics, 1937, 38, 854-872.
2. H. Wenzl, "The structure of Brauer's Centralizer Algebra", Annals of Mathematics, 1988, 128, 173-193.
3. M. Parvathi and M. Kamaraj, "Signed Brauer’s Algebras" Communications in Algebra, 1998, 26(3), 839-855.
4. M. Kamaraj and R. Mangayarkarasi, "Knot Symmetric Algebras", Research Journal of Pure Algebra, 2011, 1(6), 141-151.

## Source of Support: Nil, Conflict of interest: None Declared

[Copy right © 2015, RJPA. All Rights Reserved. This is an Open Access article distributed under the terms of the International Research Journal of Pure Algebra (IRJPA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]


[^0]:    *Corresponding author: *R. Selvarani, *Department of Mathematics, K.L.N. College of Engineering, Pottapalayam-630612, Sivagangai District, Tamilnadu, India.

