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ABSTRACT 
In this paper, we introduce the concept of the line block graph of a graph. We establish some properties of this graph. 
Also characterizations are given for graphs G for which (i) line-block graph of G is a tree and (ii)the line-block graph 
of G and G are isomorphic. We establish some relationships between (i) line-block graph and line graph and (ii) line-
block graph and block graph. 
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1. INTRODUCTION 
 
All graphs considered are finite, undirected without isolated points, loops or multiple lines. All definitions and 
notations not given in this paper may be found in Kulli [1]. 

 
If B = {u1, u2, ..., ur, r ≥ 2} is a block of a graph G, then we say that point u1 and block B are incident with each other, 
as are u2 and B and so on. If B = {e1, e2, ..., es, s ≥ 1} is a block of a graph G, then we say that line e1 and block B are 
incident with each other, as are e2 and B and so on. If two distinct blocks B1 and B2 are incident with a common 
cutpoint, then they are adjacent blocks. This idea was introduced by Kulli in [2]. The points, lines and blocks of a graph 
are called its members. 

 
The point-block graph Pb(G) of a graph G is the graph whose point set is the set of points and blocks of G and two 
points are adjacent if the corresponding blocks are adjacent or the corresponding members are incident. This concept 
was introduced by Kulli and Biradar in [3] and was studied in [4, 5, 6]. Many other graph valued functions in graph 
theory were studied, for example, in [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. 

 
The qlick graph Q(G) of a graph G is the graph whose point set is the set of lines and blocks of G and two points are 
adjacent if the corresponding lines and blocks are adjacent or the corresponding members are incident. This concept 
was introduced by Kulli in [23] and was studied in [24]. The block-line forest Bl(G) of a graph G is the graph whose 
point set is the set of lines and blocks of G and two points are adjacent if the corresponding members are incident. This 
concept was introduced by Kulli in [25]. 

 
The block graph B(G) of a graph G is the graph whose point set is the set of blocks of G and two points are adjacent if 
the corresponding blocks are adjacent. This concept was first studied by Harary in [26] and further this was studied by 
Kulli in [27, 28, 29]. The line graph L(G) of a graph G is the graph whose point set corresponds to the lines of G such 
that two points of L(G) are adjacent if the corresponding lines of G are adjacent. This graph was studied, for example, 
in [30, 31, 32, 33, 34, 35, 36]. 

 
The following will be useful in the proof of our results. 
 
Theorem A [23]: If G is a nontrivial connected (p, q) graph whose points have degree di and if bi is the number of 

blocks to which point vi belongs in G, then the qlick graph Q(G) has q – p +Σ bi +1 points and ( )21 1 1
2 2i i id b b+ −∑ ∑  

lines. 
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Theorem B [1, p.40]: If G is a (p, q) graph whose points have degree di, then the line graph L(G) has q points and 

21
2 id q−∑  lines. 

 
2. LINE-BLOCK GRAPHS 
 
The definition of the point-block graph Pb(G) of a graph G inspired us to introduce the following graph valued 
function. 

 
Definition 1: The line-block graph Lb(G) of a graph G is the graph whose point set is the union of the set of lines and 
the set of blocks of G in which two points are adjacent if the corresponding blocks are adjacent or one corresponds to a 
block of G and other to a line incident with it. 

 
Example 2: In Figure 1, a graph G and its line block graph Lb(G) are shown. 
 

                
                       G               Lb(G) 
 

Figure-1 
  

Remark 3: If G is a connected graph, then Lb(G) is also a connected graph and conversely. 
 
By definition, any point of G is not a point of Lb(G). Thus we consider only graphs without isolated points. 
 
Iterated line-block graphs are defined by ( ) ( )( )1n n

b bL G L L G−== for n ≥ 2 where ( ) ( )1 .b bL G L G=  
 
Remark 4: For any graph G, Lb(G) is a spanning subgraph of Q(G). Thus the graphs Lb(G) and Q(G) have the same 
number of points. 
 
Remark 5: For any graph G, B(G) is a subgraph of Lb(G). 
 
Remark 6: For any graph G, Bl(G) is a subgraph of Lb(G). 
 
Remark 7: For any graph G, Q(G) = L(G) ∪ Lb(G). 
 
The following theorem determines the number of points and lines in the line-block graph of a graph. 
 
Theorem 8: If G is a nontrivial connected (p, q) graph whose points have degree di and if bi is the number of blocks to 

which point vi belongs in G, then the line block graph Lb(G) of G has q – p +Σbi+1 points and ( )1 1
2 i iq b b+ −∑  lines. 

 
Proof: By Remark 4, the graphs Lb(G) and Q(G) have the same number of points. Hence by Theorem A, Lb(G) has 

q – p +Σbi+1 points. 
 

by Remark 7, the number of lines of Q(G) is the sum of the number of lines in L(G) and in Lb(G). By Theorem A the 

number of lines in Q(G) is ( )21 1 1
2 2i i id b b+ −∑ ∑ . Also by Theorem B, the number of lines in L(G) is 21

2 iq d− + ∑ . 

Thus the number of lines in 
 

 Lb(G) ( )2 21 1 11
2 2 2i i i id b b q d = + − − − + 

 
∑ ∑ ∑   

          ( )1 1 .
2 i iq b b= + −∑  
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Corollary 9: Let G be a graph without isolated points. If G is a (p, q) graph with m components whose points have 
degree di and bi is the number of blocks to which point vi belongs in G, then the line-block graph Lb(G) of G has 

iq p b m− + +∑ points and ( )1 1
2 i iq b b+ −∑ lines. 

 
Remark 10: For any block of G with at least 3 points, the corresponding point in Lb(G) is a cut point of Lb(G). 
 
Remark 11: For any line of G, the corresponding point in Lb(G) is an end point of Lb(G). 
 
Theorem 12: A graph G is a block if and only if the line-block graph Lb(G) of G is a star. 
 
Proof: Suppose G is a block. Then clearly Lb(G) is a star. 
 
Conversely suppose Lb(G) is a star. We consider the following cases. 
 
Case-1: Suppose Lb(G) = K1, 1. Then G is K1, 1.  
 
Case-2: Suppose Lb(G) = K1, p, p ≥ 2. Then Lb(G) has a unique cut point and by Remark 10, G has a unique block. It 
implies that G is itself a block. 
 
From the above two cases, we see that G is a block. 
 
Corollary 13: For any cycle Cp with p ≥ 3 points, Lb(Cp) = K1, p.  
 
Corollary 14: For a complete graph Kp, p ≥ 2, ( ) ( )1

1,
2

b p p pL K K −= . 

Corollary 15: If G is a block with p lines, then Lb(G) = K1, p. 
 
Theorem 16: Let G be a nontrivial connected graph. The graphs G and Lb(G) are isomorphic if and only if G is K2. 
 
Proof: Suppose G and Lb(G) are isomorphic. We now prove that G = K2. On the contrary, assume G is a connected 
graph with p≥3 points. We now consider the following two cases.  
 
Case-1: Suppose G is not a tree with p≥3 points. Then G has at least p lines and has at least one block. Thus Lb(G) has 
at least p+1 points. Therefore the number of points of G is less than that in Lb(G). Hence G and Lb(G) are not 
isomorphic, a contradiction. 
 
Case-2: Suppose G is a tree with p≥3 points. Then G has p – 1 lines and p – 1 blocks. Then Lb(G) has 2p – 2 points,  
 
Thus the number of points of G is less than that in Lb(G). Hence G ≠ Lb(G), a contradiction.   

 
From the above two cases, we conclude that G is K2. 

 
Conversely suppose G is K2. Obviously G = Lb(G). 

 
The following corollaries are immediate consequences of the above theorem. 
 
Corollary 17: Let G be a nontrivial connected graph. Then ( )n

bG L G= , n≥1, if and only if G = K2. 
 
Corollary 18: Let G be a graph without isolated points. Then ( )n

bG L G= , n≥1, if and only if G = mK2, m≥1. 
 
Theorem 19: Let G be a nontrivial connected graph. The line block graph Lb(G) of G is a tree if and only if every point 
of G lies on at most 2 blocks. 
 
Proof: Suppose Lb(G) is a tree. We now show that every point of G lies on at most 2 blocks. Assume G has a  point 
which lies on at least 3 blocks, say b1, ..., br, r≥3. It follows from definition, the corresponding points of b1, ..., br, form 
Kr, r≥3 as a subgraph of Lb(G). Thus G contains a cycle, a contradiction. Hence every point of G lies on at most 2 
blocks. 
 
Conversely suppose every point of G lies on at most 2 blocks. We now consider the following two cases. 
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Case-1: Suppose every point of G lies on one block. Then G is a block. By Theorem 11, Lb(G) is a star and hence Lb(G) 
is a tree. 
 
Case-2: Suppose a point of G lies on 2 blocks. It follows from definition, the corresponding points of blocks form K2 as 
a subgraph and the corresponding point of a line which is in a block form an endline in Lb(G). Therefore Lb(G) has no 
cycles and hence Lb(G) is a tree. 
 
3. RELATION BETWEEN LINE-BLOCK GRAPH AND LINE GRAPH 
 
Theorem 20: If G is a block with p lines, then L(Lb(G)) = Kp. 
 
Proof: Suppose G is a block with p lines. By Corollary 14, Lb(G) = K1,p. It is known that L(K1, p) = Kp. Thus  
L(Lb(G)) = Kp. 
 
4. RELATION BETWEEN LINE-BLOCK GRAPH AND BLOCK GRAPH 
 
A graph G+ is the end line graph of G if G+ is obtained from G by adjoining an end line ui ui' at each point ui of G. 
 
Proposition 21:  If G = K1, p, p ≥ 2, then B(Lb(G))= G. 
 
Proof: Suppose G=K1, p, p ≥ 2. Then ( ) .b pL G K +=  
 
We have ( ) 1, .p pB K K+ =  Thus ( )( ) ( ) 1, .b p pB L G B K K+= =  Therefore ( )( ) .bB L G G=  

 
Theorem 22: Let G be a nontrivial connected graph. Then Lb(G) and B(G)+ are isomorphic if and only if G is a tree. 
 
Proof: Suppose G is a tree. Then every block of G is K2. Thus there is a one-to-one correspondence between the points 
of B(G) and blocks of G such that two points of B(G) are adjacent if the corresponding blocks of G are adjacent. The 
graph B(G)+ is obtained from B(G) by adding a new line at each point of B(G) such that this line has exactly one point 
in common with B(G). By definition of Lb(G), the points vi, vi' in Lb(G) corresponding to line ei and block bi of G, 
respectively, are incident. By Remark 5, B(G) is a subgraph of Lb(G). In both Lb(G) and B(G)+, every point of the 
subgraph isomorphic to B(G) is adjacent to exactly one end point. Hence Lb(G) and B(G)+ are isomorphic. 
 
Conversely suppose Lb(G) = B(G)+. We now prove that G is a tree. One the contrary, assume G has a cycle. Then the 
number of lines of G is greater than the number of blocks of G. Clearly Lb(G) has less number of points than B(G)+. 
Thus Lb(G) ≠ B(G)+, which is a contradiction. This completes the proof. 
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