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ABSTRACT 
Let G = (V, E) be a graph without isolated vertices and isolated edges. An edge dominating set F of G is called a 
neighborhood total edge dominating set if the edge induced subgraph 〈N(F)〉 has no isolated edges. The neighborhood 
total edge domination number γ'nt(G) of G is the minimum cardinality of neighborhood total edge dominating set of G. 
In this paper, we initiate a study of this new parameter. 
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1. INTRODUCTION 
 
All graphs considered here are finite, undirected without loops and multiple edges. Unless and otherwise stated, the 
graph G = (V, E) considered here have p = |V| vertices and q = |E| edges. Any undefined term in this paper may be 
found in Kulli [2]. 
 
A set D of vertices in a graph G is called a dominating set if every vertex in V – D is adjacent to some vertex in D. The 
domination number γ(G) of G is the minimum cardinality of a dominating set of G. Recently several domination 
parameters are given in the books by Kulli [3,4, 5]. 
 
A set E of edges in a graph G is called an edge dominating set if every edge in E – F is adjacent to at least one edge in 
F. The edge domination number γ '(G) of G is the minimum cardinality of an edge dominating set of G. The concept of 
edge domination was introduced by Mitchell and Hedetniemi in [21] and was studied by several authors for example [1, 
6, 9, 10, 11, 12, 20]. 
 
An edge dominating set F of a graph G is a connected edge dominating set if the edge induced subgraph 〈F〉 is 
connected. The connected edge domination number γ 'c(G) of G is the minimum cardinality of a connected edge 
dominating set of G. The concept of connected edge domination was introduced by Kulli and Sigarkanti in [16] and 
was studied in [17]. A set F of edges in a graph G = (V, E) is called a total edge dominating set of G if every edge in E 
is adjacent to at least one edge in F. The total edge domination number γ 't(G) of G is the minimum cardinality of a total 
edge dominating set of G. This concept was introduced by Kulli and Patwari in [15] and was studied for example [7, 8]. 
 
The vertices and edges of a graph G are called the elements of G. A set X of elements of G is an entire dominating set if 
every element not in X is either adjacent or incident to at least one element in X. The entire domination number ε(G) of 
G is the minimum cardinality of an entire dominating set of G. This concept was studied in [13, 19]. A set X of 
elements in G is a total entire dominating set if every element in G is either adjacent or incident to at least one element 
in X. The total entire domination number εt(G) of G in the minimum cardinality of a total entire dominating set of G. 
This concept was studied by Kulli and Sigarkanti in [18]. 
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For any vertex v ∈ V, the open neighborhood of v is the set N(v) = {u ∈ V: uv ∈ E} and the closed neighborhood of v is 
the set N[v] = N(v)∪{v}. For a set S ⊆ V, the open neighborhood N(S) of S is defined by N(S) = ( )

∈


v s
N v  for all v ∈ S 

and the closed neighborhood of S is N[S] = N(S) ∪ S. Let S be the set of vertices and let u ∈ S. The private neighbor set 
of u with respect to S is the set pn[u, S] = {v : N[v] ∩ S = {u}}. For any edge e ∈ E, the open neighborhood of e is N(e) 
and the  closed neighborhood of e is N[e] = N(e) ∪ {e}. If F ⊆ E, then ( ) ( )

∈
= 

v s
N F N e  and N[F] = N(F) ∪ F. If F ⊆ 

E and e1 ∈ F, then the private neighbor of e1 with respect to F is the set pn[e1, F] = { e2 : N[e2] ∩ F = { e1}}. The 
degree of an edge uv is defined by deg u + deg v – 2. An edge uv is called an isolated edge if deg uv = 0. Let ∆'(G) 
denote the maximum degree among the edges of G. 
 
In the cycle C9 = {e1, e2, …, e9}, F1 = {e1, e4, e7} and F2 = {e1, e4, e6, e8} are edge dominating sets of C9. The induced 
subgraph 〈N(F1)〉 has no isolated edges and the induced subgraph 〈N(F2)〉 has isolated edges. Motivated by this example 
in [14] Kulli introduced the concept of neighborhood total edge domination number. In this paper, we study this 
parameter. 
 
2. RESULTS 
 
We assume throughout that G is a graph without isolated vertices and without isolated edges. 
 
Definition 1: An edge dominating set F of a graph G is called a neighborhood total edge dominating set if the induced 
subgraph 〈N(F)〉 contains no isolated edges. The neighborhood total edge domination number γ'nt(G) of G is the 
minimum cardinality of a neighborhood total edge dominating set of G. 
 
Definition 2: A neighborhood total edge dominating set is minimal if no proper subset of F is a neighborhood total 
edge dominating set. 
 
Example 3: Consider the graph G as shown in Figure 1, 
 
 

G:  
Figure-1 

 
We see that  γ '(G) = 2, γ 'c(G) = 4,  γ 't(G) = 4,   γ 'nt(G) = 2. 
 
Proposition 4: For a graph G, 

γ '(G) ≤ γ 'nt(G).                    (1) 
 
Proof: Every neighborhood total edge dominating set is an edge dominating set. Thus (1) holds.  The graph G of     
Figure 1 achieves this bound. 
 
Theorem 5: If Pp is a path with p ≥ 4 vertices, then  

( )' .
2

γ  =   
nt p

pP  

 
Proof: Let Pp = (v1, v2,…, vp) be a path with p ≥ 4 vertices. If p = r (mod 4), r = 0, 1 or 3, then F={ei: i=4k – 2, 4k – 1, 
k=1, 2, ...} is a neighborhood total edge dominating set of Pp. If p=2 (mod 4), then F ∪ {ep–2} is a neighborhood total 
edge dominating set of Pp. Thus 

( )' .
2

γ  ≤   
nt p

pP  

 

If p = r (mod 4), r = 0, 1 or 3, then ( ) ( )' ' .
2

γ γ  ≥ =   
nt p t p

pP P  Further if p = 2 (mod 4), then for any  γ 't-set F of Pp, 

〈N(F)〉 has at least one isolated edge. Thus ( )' .
2 2

γ    ≥ ≥      
nt p

p pP  Hence the result follows. 

 
Corollary 6:. If Pp is a path with p ≥ 4 vertices, then γ 'nt(Pp) = γ 't(Pp) if and only if p is even or p = 1 (mod 4). 
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Proof: Since γ 't(Pp) = 2
p , if p is even, 

                                 =
2

 
  

p , if p = 1(mod 4), the result follows. 

 
Theorem 7: If Cp is a cycle with p ≥ 3 vertices, then  

γ 'nt(Cp)  = 1
3
p  +  

, if p = 2 (mod3), 

= 
3
p 

  
, otherwise. 

 
Proof: Let Cp = (v1, v2,…, vp, v1) be a cycle with p≥3 vertices. If p = r (mod 3), r = 0 or 1, then F = {ei:i=3k – 2, k=1, 2, 
...} is a neighborhood total edge dominating set of Cp. If p = 2(mod 3), then F ∪{ep} is a neighborhood total edge 
dominating set of Cp. Thus 

( )
1,   if 2(mod 3),

3'
,      otherwise.

3

nt p

p p =
C

p
γ

  +  ≤ 
 
  

 

We have ( ) ( )' ' .
3nt p p
pC Cγ γ  ≥ =   

 If p = 2 (mod 3), then for any γ '-set of F of Cp, 〈N(F)〉 has at least one isolated 

edge. Thus ( )' 1.
3nt p
pCγ  ≥ +  

 Hence the result follows. 

 
Corollary 8: If Cp is a cycle with p≥3 vertices, then 

γ 'nt(Cp) = γ 't(Cp) if and only if p = 4, 5 or 8, 
γ 'nt(Cp) = γ 'c(Cp) if and only if p = 3, 4 or 5. 
γ 'nt(Cp) = γ '(Cp) if and only if p = 0(mod 3) or p = 1(mod 3). 

 

Proof: Since γ 't(Cp)  = 
2
p , if p = 0 (mod 4) 

 = 
2

 
  

p , if p = 1(mod 4) or p = 3(mod 4) 

 = 
2

 
  

p +1, if p = 2(mod 4), 

 γ 'c(Cp)  = p – 2, 

 γ '(Cp)  = ,
3
p 

  
  

the result follows. 
 
Theorem 9: If Km, n is a complete bipartite graph with 2 ≤ m ≤ n, then  

γ 'nt(Km, n) = m. 
 
Proof: In Km, n, v is a vertex such that deg v = m. Let F be the set of all edges incident with a vertex v. It is easy to see 
that F is an edge dominating set and the induced subgraph 〈N(F)〉 is connected and does not contain an isolated edge. 
Hence F is a neighborhood total edge dominating set. 
 
Thus γ 'nt(Km, n) ≤ |F| = deg v = m. Since γ '(Km, n) =m, the theorem follows. 
 
Theorem 10: If Kp is a complete graph with p≥3 vertices, then  

 γ 'nt(Kp) = 
2

 
  

p . 

 
Proof: Let F be a maximum matching of Kp. Clearly F is an edge dominating set and also 〈N(F)〉 is connected and does 
not contain an isolated edge. Hence F is a neighborhood total edge dominating set. Thus  

γ 'nt(Kp) ≤ |F| = 
2

 
  

p . 
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Since γ '(Kp) = 2
 
  

p , the result follows. 

 
Theorem 11: A superset of a neighborhood total edge dominating set is a neighborhood total edge dominating set. 
 
Proof: Let F be a neighborhood total edge dominating set of a graph G. Let F1 = F ∪{e}, where e ∈ E –F. Then           
e ∈ N(F1) and F1 is an edge dominating set of G. Suppose the induced subgraph 〈N(F1)〉 contains an isolated edge e1. 
Then N(e1) ⊆ F – N(F). Thus e1 is an isolated edge in 〈N(F)〉, which is a contradiction. Thus 〈N(F1)〉 has no isolated 
vertices. Therefore F1 is a neighborhood total edge dominating set. 
 
We establish a characterization of minimal neighborhood total edge dominating sets. 
 
Theorem 12: A neighborhood total edge dominating set F of a graph G is minimal if and only if for every e ∈ F, one 
of the following holds.  

(i) pn [e, F] ≠ φ 
(ii) there exists an edge e1 ∈ N(F – {e}) such that N(e1) ∩ N(F – {e}) = φ. 

 
Proof: Let F be a minimal neighborhood total edge dominating set of G. Let e ∈ F. Then either F – {e} is not an edge 
dominating set G or F – {e} is an edge dominating set and the induced subgraph 〈N(F – {e})〉 contains an isolated 
vertex. Suppose F – {e} is not an edge dominating set. Then pn [e, F] ≠ φ. Suppose F – {e} is an edge dominating set 
and e1 ∈ N(F – {e}) is an isolated edge in 〈N(F – {e})〉. Then N(e1) ∩ N(F – {e}) = φ. 
 
Conversely suppose F is a neighborhood total edge dominating set of G satisfying the conditions (i) and (ii). Then F is 
a minimal neighborhood total edge dominating set. Thus by Theorem 11, the result follows. 
 
Theorem 13: Let T be a tree. Then γ 'nt(T) =1 if and only if T = K1, p, p≥3 or Sm, n, 2 ≤ m ≤ n. 
 
Proof: If T = P3 or P4, then clearly γ 'nt(T) = 2. Thus T ≠ P3 or P4. Let γ 'nt(T) =1. Let F = {e} be the γ 'nt-set of T. Let e = 
uv. Since T ≠ P3, deg v ≥ 3. Suppose deg u = 2. Then 〈N(F)〉 has two components in which one component is an isolated 
edge, which is a contradiction. This implies that deg u = 1 or deg u ≥ 3. If deg u = 1, then γ 'nt(T) =1 and T = K1, p, p≥3. 
If deg u ≥ 3, γ 'nt(T) =1 and T = Sm, n, 2 ≤ m ≤ n.  
 
Converse is obvious. 

 
Proposition 14: If T = S1, p, p≥0, then γ 'nt(T) =2. 
 
Theorem 15: If G is a connected graph with ∆' < q – 1, then γ 'nt(G) ≤ q – ∆'. 
 
Proof: Let e be an edge of a connected graph G and deg e = ∆'. Since ∆' < q – 1, there exist two adjacent edges e1 and 
e2 such that e1 ≠ e2, e1 ∈ N(e) and e2 ∉ N(e). Let F = (N(e) – e1) ∪{e2}. Then | F | = ∆'. Further it is easy to see that        
E – F is a neighborhood total edge dominating set of G. Thus γ 'nt(G) ≤ | E – F | = q – ∆'. 
 
Theorem 16: For any graph G, γ 'nt(G) = q if and only if G = mP3.  
 
Proof: Suppose γ 'nt(G) = q. On the contrary, assume G ≠ mP3. Then G has at least one component G1 which is not P3.  
 
Clearly all edges of G1 are not in a neighborhood total edge dominating set. Hence γ 'nt(G) ≠ q, which is a contradiction. 
Hence G = mP3. 
 
Converse is obvious. 
 
3. SOME OPEN PROBLEMS 
 
The following are some problems for further investigation 
 
Problem 1: Characterize graphs G for which γ 'nt(G) =1. 
 
Problem 2: Characterize graphs G for which γ 'nt(G) =2. 
 
Problem 3: Characterize trees T for which γ 'nt(T) =2. 
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Problem 4: Characterize graphs G for which γ 'nt(G) = q – ∆'. 
 
Problem 5: Characterize trees T for which γ 'nt(T) = q – ∆'. 
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