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ABSTRACT 
Let R be a commutative ring with identity and let x be an element of R. The Element Ideal Graph 𝛤𝛤𝑥𝑥(𝑅𝑅) is a graph 
whose vertex set is the set of nontrivial ideals of R and two vertices I and J are adjacent if and only if 𝑥𝑥 ∈ 𝐼𝐼 𝐽𝐽. In this 
paper we consider the element ideal graph of the ring of integers. 
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INTRODUCTION 
 
Let R be a commutative ring with identity, and let Z(R) be its set of zero divisors. We associate a simple graph Γ(R) to 
R with vertices Z*(R) = Z(R)\ {(0)}, the set of all non-zero zero divisors of R, and for distinct x, y ∈Z*(R), the vertices 
x and y are adjacent if and only if xy=0. Obviously Γ(R) is empty if R is an integral domain. 
 
The zero divisor graph of a commutative ring was introduced by Beck in [4], and further studied in [1, 2, 3, 9, 10]. The 
annihilating ideal graph AG(R) is a graph with vertex set AG*(R) =AG(R)\ {(0)} such that there is an edge between 
vertices I and J if and only if  I J = (0). The idea of annihilating ideal graph was introduced by Behboodi and Rakeei in 
[5, 6]. 
 
In [11], we introduced the notion of the element ideal graph of a commutative ring. In the present paper we consider the 
element ideal graph of the ring of integers.  
 
From now on we shall use the symbolI— Jto denote for two adjacent ideal vertices I and J, and we use Z to denote the 
set of integer numbers.  
 
1. BACKGROUND 
 
In this section we state some definitions and theorems that we need in our work.  
 
Definition: 1.1[11, P.404] Let R be a commutative ring with identity and let x∈R. The element ideal graph is a graph 
whose vertex set is nontrivial ideals of R, and two of its vertices I and J are adjacent if and only if x ∈ I J. We denote 
the element ideal graph by Γx(R).  
 
Definition: 1.2[8] 

1. The distance d(u, v) between a pair of vertices u and v of  the graph Γ is the minimum of the lengths of  the 
u—v paths ofΓ.  

2. The degree of the vertex a in the graph Γ is the number of edges incident to a.  
3. The diameter of the graph Γ is the maximum distance between any two distinct vertices. 
4. The girth of the graph Γ is the length of the shortest cycle in Γ. 
5. A bipartite graph is one whose vertex set is partitioned into two disjoint subsets in such a way that the two end 

vertices for each edge lie in distinct partition. The complete bipartite graph with exactly two partitions of order 
m and 1 is called star.  
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6. A complete subgraph Kn of a graph Γ is called a clique, and cl(Γ) is the clique number of  Γ, which is the 

greatest integer r≥ 1 such that  Kr⊆Γ. 
7. The graph Г is called a plane graph if it can be drawn on a plane in such a way that any two of its edges either 

meet only at their end vertices or do not meet at all. A graph which is isomorphic to a plane graph is called a 
planar graph.  

 
Theorem: 1.3[8, P.96] (Kuratowsky Theorem) A graph Γ is planar if and only if it does not contains a graph 
homomorphic with K5 or K (3, 3). 
 
Theorem: 1.4[5, P.8] For every ring R, the annihilating-ideal graph AG(R) is connected and diam(AG(R))≤3. 
Moreover, if AG(R) contains a cycle, then gr (AG(R)) ≤ 4. 
 
Theorem: 1.5[12] Let  n>1 be a non-prime integer. Then, Γ(Zn) contains a subgraph which isomorphic with AG(Zn). 
 
2. THE ELEMENT IDEAL GRAPH OF A RING OF INTEGERS 
 
The main purpose of this section is to investigate the element ideal graph of the ring of integers. 
 
We begin this section by the following example. 
 
Example: 1 The graph  𝛤𝛤12 (𝑍𝑍) is:  
(2)         (3)        
 
(6)    (4)                
 
Lemma: 2.1 A nontrivial ideal I of  Z is an ideal vertex of  Γx(Z) if and only if  x divisible by the generator of  I. 
 
Proof: Let I= (a) be an ideal vertex of Γx(Z). Then there exists an ideal vertex (b) of Γx(Z) such that x∈(a)(b). This 
implies that there exists an integer r such that x=rab. Hence a|x. 
 
Conversely, if x is divisible by the generator of I= (a), then there exists an integer r such that x=ra. Obviously x∈(a)(r). 
Hence (a) is an ideal vertex of Γx(Z).  
 
Example: 2 obviously (2) is an ideal vertex of Γ12(Z) and 2 divides 12. 
 
Proposition: 2.2 Let x∈Z+-{1}.Then x  is a prime number if and only if  Γx(Z)=∅. 
  
Proof: Let Γx(Z)=∅. Then by Lemma2.1, the only divisors of x are ∓1 and ∓x. This means that x is a prime number.  
 
Conversely, ifx is a prime number, then x has no divisor except ∓1 and ∓x. Then by Lemma2.1, Γx(Z)=∅. 
 
Example: 3 The graph Γ2(Z) is an empty graph. 
 
The next result illustrates the adjacency of two ideals in the element ideal graph of the ring of integers. 
 
Theorem: 2.3 Let x, a, b∈Z-{0,∓1}. If (a) and (b) are ideal vertices of  Γx(Z) such that a and b are relatively prime 
integers, then (a) and (b) are adjacent ideal vertices in Γx(Z). 
 
Proof: Since (a) and (b) are ideal vertices of Γx(Z), then  by Lemma 2.1, both a and b divide x. Since the common 
divisor of aand b is equal to 1, then ab divides x. This means that x∈(a)(b). Thus (a) and (b) are adjacent inΓx(Z). 
 
Example: 4 The ideals (3) and (4) of Z are adjacent ideal vertices in Γ12(Z), since 3 and 4 are relatively prime. 
 
The converse of Theorem2.3 may not be true in general, as the following example shows. 
 
Example: 5 The ideals (6) and (4) of Z are adjacent ideal vertices in Γ24(Z), while 6 and 4 are not relatively prime. 
 
The next result illustrates that Γx(Z) is infinite if and only if x=0. 
 
Proposition: 2.4 Every nontrivial ideal of Z is a vertex of Γx(Z) if and only if x=0. 
 
Proof: Suppose that every ideal (a) of Z is an ideal vertex of  Γx(Z).Then by Lemma2.1, every nonzero integer divides 
x. This statement is true for the only when  x=0.  
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The next result demonstrates that the divisibility leads to more adjacency in the element ideal graph.   
 
Theorem: 2.5 Let  x, a, b∈Z-{0,∓1}with b is a non-prime integer. Then (a) is adjacent to (b) in Γx(Z) if and only if (a) 
is adjacent to all non-trivial ideals which are generated by divisors of b. 
 
Proof: Let (a) and (b) be two adjacent ideal vertices of Γx(Z) and let c≠ ∓1 be the divisor of b. This means that   
x∈(a)(b) and c|b. Then there exists  r,s∈Z such that x=rab and b=sc. This implies that x=rsac. Thus  x∈(a)(c). This 
means that (a) and (c) are adjacent ideal vertices in Γx(Z). 
 
Conversely, if (a) is adjacent to all nontrivial ideals which are generated by divisors of b, then (a) is adjacent to (b), 
since b is a divisor of itself. 
 
Example: 6 The ideals (2) and (6) of Z are adjacent in Γ12(Z) and 3 is a divisor of 6. So (2) is also adjacent to (3) in 
𝛤𝛤12 (𝑍𝑍). 
 
From Theorem2.5 the following corollary is immediate. 
 
Corollary: 2.6 Let x, a, b∈Z-{0,∓1}. If Γx(Z) consists of only one edge (a) — (b) of distinct terminals, then b is either 
a prime number or divisible by a. 
 
Proof: Let b is a non-prime number. Then there exists, c∈Z-{0,∓1, ∓b}such that c|b. By Theorem2.5, (a) and (c) are 
adjacent 𝛤𝛤𝑥𝑥(𝑍𝑍). Since  c≠ ∓b and Γx(Z) consists of the only one edge (a) — (b), then (c) = (a). This implies that  
a=∓c. Therefore  a|b. 
 
Example: 7 The graph  Γ27(Z) consists of the edge (3) — (9) and the loop (3) — (3), and 9 is divisible by 3.   
 
In the next result, we put a certain condition for the element ideal graph to be a star graph. 
 
Theorem: 2.7 Let x be a nonzero integer such that Γx(Z) ≠ ∅. Then  Γx(Z)  is a star graph if and only if  Γx(Z) consists 
of only one edge of distinct terminals.  
 
Proof: Let Γx(Z) be a star graph with center (a) , and let (b) and (c) be two ideal vertices incident to (a) in Γx(Z). This 
means that x∈(a)(b)∩(a)(c). Then there exist s, r∈ x∈Z  such that x=rab=sac. This implies that x∈(ra)(b)∩(sa)(c). Thus 
(b) and (c) are adjacent to (ra) and (sa) respectively. But (b) and (c) are the end vertices of Γx(Z), so  (a)=(ra)=(sa).This 
gives that r=∓1 and s=∓1. Since rab=sac, then ∓ab=∓ac. The cancellation law gives∓b=∓c. Thus (b)=(c) . Hence 
Γx(Z) consists of the only one edge of distinct terminals (a) and (b).  
 
The converse is clear, since every graph consisting of one edge is a star graph. 
 
Example: 8 The graph  Γ15(Z) is a star graph with the only edge (3)—(5).   
 
The following result shows that the graph Γx(Z)may be a star graph of looped center. 
 
Theorem: 2.8 Let n∈Z+-{1} and let p be a prime number. Then the graphΓpn (Z) is star graph of looped center (p) if 
and only if either n=2 or n=3. 
 
Proof: If n=2, then Γpn (Z)consists of the loop (p)— (p). If n=3, then Γpn (Z)consists of the edge (p)— (p2) and the loop 
(p)— (p). From both cases we see that the graph Γpn (Z) is a star graph of looped center (p).   
 
Conversely, suppose that Γpn (Z) is a star graph of looped center (p). Since Γpn (Z) ≠ ∅, then by Proposition2.2, n≠ 1. 
Now we determine those integers at which Γpn (Z) is a star graph of looped center (p). If n=4, then Γpn (Z) consists of 
the edges (p)— (p2) and (p)— (p3) with the loops (p)— (p) and (p2)— (p2).In this case Γpn (Z) is not a star graph, 
because it has a loop at the vertex (p2). If n>4, then pn∈(p)(p2)∩(p2)(p3)∩(p)(p3). This means that (p)—(p2)—(p3)—(p) 
is a cycle in  Γpn (Z). In this case Γpn (Z) is not a star graph for every n>4. Hence the only cases for  Γpn (Z) to be a star 
graph of looped center (p) are n=2 and n=3. 
 
Example: 9 The graph Γ8(Z) is a star graph of looped center (2).  
 
   (2)            (4)  
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The next result illustrates the planarity of the graph Γpn (Z).  
 
Theorem: 2.9 Let n∈Z+-{1} and let p be a prime number. Then the graphΓpn (Z) is planar graph if and only if n<9. 
 
Proof: Suppose that n<9. If n=8, then the graphΓpn (Z) can be constructed as follows: 
(p2) 
 
 
 
 (p6)(p4)— (p3)—(p5)       
 
 
 
(p7)— (p)             
 
Clearly the graph Γp8 (Z) is a planar graph. SinceΓp2(Z), Γp3 (Z),…, Γp7(Z) are subgraphs of Γp8(Z), then they are also 
planar graphs.  
 
Conversely, suppose that Γpn (Z) is a planar graph. We have to show that n<9. If n≥9, then the graph Γpn (Z)contains a 
complete subgraph K5 whose vertices are (p) ,(p2),(p3),(p4) and (p5). Then by Kuratowsky Theorem in [7], Γpn (Z) is not 
planar graph. This contradicts the fact that Γpn (Z) is a planar graph. Therefore n must be less than 9. 
 
Proposition: 2.10 Let x, a, b∈Z-{0,∓1} such that (a) is an end vertex of Γx(Z). Then (a)—(b) is an edge of  Γx(Z) iff  
x=∓ a b. 
 
Proof:  Let (a)— (b) be an edge of  Γx(Z). Then  x∈(a)(b) . This implies that x=rab for some r∈Z, then  x∈(a)(rb).This 
means that (a)—(rb)  is an edge of  Γx(Z). Since (a) is an end vertex ofΓx(Z), then (b) = (rb). This gives that r=∓1, and 
hence x=∓ab. 
 
The converse is clear, since x=∓a b implies that x∈(a)(b).This means that (a)—(b) is an edge inΓx(Z). 
 
Example: 10 In the graph Γ12(Z), the ideal vertex (6) is an end vertex adjacent to the ideal vertex (2). 
 (2)        (3)        

 
 
(6)           (4)                
Γ12(Z) 
 
In the next result we find the clique number of  Γp1p2…pn (Z). 
 
Theorem: 2.11 If n∈Z+-{1} and  p1, p2 ,… ,pn are distinct  prime numbers, then  the graph Γp1p2…pn (Z)  contains a 
maximal complete subgraph of order n, moreover cl(Γp1p2…pn (Z))=n.  
 
Proof: Define the graph G  by G={(pi)—(pj):i,j=1,2,…,n}. Since 𝑝𝑝1𝑝𝑝2 … 𝑝𝑝𝑛𝑛 ∈ (𝑝𝑝𝑖𝑖)(𝑝𝑝𝑘𝑘)for every i, k=1, 2,…,n. 
Obviously, G is a complete subgraph of  Γp1p2…pn (Z) of order n. To show that the graph G is a maximal complete 
subgraph ofΓp1p2…pn (Z), let(a)  be any ideal vertex of Γp1p2…pn (Z) different from(p1), (p2), … , (pn ) and adjacent to all 
of them.  Then at least one of  𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑛𝑛 , say  p1 is different from  aand divides it. Since (a) is adjacent to (p1), then 
p1p2 … pn ∈ (p1)(a). This implies that there exists an integer r such that p1p2…pn =rp1a. Since p1|a  , then  p1

2|p1a. This 
implies that p1

2|𝑝𝑝1𝑝𝑝2 …𝑝𝑝𝑛𝑛 . This contradicts the fact that p1 , p2 ,… ,pn are distinct  prime numbers. Therefore G is a 
maximal complete subgraph of Γp1p2…pn (Z). Hence cl(Γp1p2…pn (Z))=n. 
 
Example: 11 Consider the graphΓ30(Z).  
(2)     (3)  
  
(10)         
   (15)                                                       
 
(5)      
 (6)    
 

𝛤𝛤30 (𝑍𝑍) 
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Clearly cl(Γ30(Z) is equal to the number of primes which are divide 30, that is cl(Γ30(Z)=3. 
 
In the next result we find the clique number of Γpn (Z).  
 
Theorem: 2.12 Let p be a prime number. Then Γp2n +1(Z))=Γp2n +2 (Z))=n+1 for every n∈Z+. 
 
Proof: Clearly, the ideal vertices of  Γp2n +1 (Z) and Γp2n +2 (Z) are (p), (p2),…,(p2n) and (p), (p2), … , (p2n+1) respectively. 
Since   p2n∈(pi)(pj) , for all  i,j=1,2,…,n+1, then the graph G={(pi)—(pj): i, j=1,2,…,n+1} is a complete subgraph of 
Γp2n +1 (Z) and Γp2n +2 (Z).To show that G is a maximal complete subgraph of Γp2n +1 (Z), let (pm) be any ideal vertex of 
Γp2n +1 (Z) such that m>n+1, then p2n+1∉(pm)(pn+1), which means that (pm) is not adjacent to (pn+1). Thus G is a maximal 
complete subgraph of  Γp2n +1 (Z) of order k+1, and hence cl(Γp2n +1(Z))=n+1 for every  n∈Z+. It is remain to show that 
G is also a maximal complete subgraph of Γp2n +2(Z). If (pm) is an ideal vertex of Γp2n +2(Z) such that m>n+1, then 
p2n+2∉(pm) (pn+1), that means (pm) is not adjacent to (pn+1). Thus G is a maximal complete subgraph of Γp2n +2(Z) of 
order k+1. Hence cl(Γp2n +2 (Z))=n+1for every  n∈Z+. 
 
Example: 12 Consider the graphs  Γ32(Z) and Γ64(Z). 
 
 
(2)     (8)          (2)      (8)              
 
 
 
  (16)       (4)         (16)       (4) 
Γ32(Z) Γ64(Z) 
 
Clearly cl(Γ32(Z))=cl(Γ64(Z))=3.  
 
3. THE RELATIONSHIPΓn(Z) AND AG (Zn) 

 
In this section, the relationship between two element ideal graphs of the ring of integers will be explored. Moreover the 
relationship between the element ideal graph and the graph of annihilating ideals will be illustrated. 

 
We start this section with the following result. 
 
Proposition: 3.1 Let xy∈Z+\{1} such that x is a product of two relatively prime integers. Then x|y if and only if  
Γx(Z) ⊆ 𝛤𝛤𝑦𝑦 (𝑍𝑍).   
 
Proof: Let x|y. Then x is a factor of y. So by Proposition2.14 in [10], Γx(Z) ⊆ 𝛤𝛤𝑦𝑦 (𝑍𝑍).  
 
Conversely, letΓx(Z) ⊆ Γy (Z), and let x=ab for some relatively prime integers ab∈Z+\{1}. Then x∈(a)(b). This means 
that (a)— (b) is an edge in Γx(Z). Since Γx(Z) ⊆ Γy (Z), then  (a)— (b) is also an edge in Γy(Z). By Lemma2.1, both       
a and b divide y. Since a and b are relatively prime integers, then x=ab|y. 
 
Example: 13 The graph Γ6(Z) is a subgraph of Γ12(Z) , since6 divides 12. 
 
The next result gives a sufficient condition for two element ideal graphs to be disjoint. 
 
Proposition: 3.2 If x and y are relatively prime integers, then 𝛤𝛤𝑥𝑥(𝑍𝑍) and  Γy (Z) are disjoint. 
 
Proof: Let Γx(Z) ∩ 𝛤𝛤𝑦𝑦 (𝑍𝑍) ≠ ∅. Then Γx(Z) and Γy (Z) contain an edge say (a)—(b) .From Lemma2.1, both a and b 
divide x and y. Since gcd(x, y) =1, then 1=ab∈(a). This contradicts the fact that (a) is a nontrivial ideal. Therefore 
Γx(Z) and  Γy(Z) are disjoint.  
 
Example: 14 The graphs Г9(Z) and Г16(Z) are disjoint, since 9 and 16 are relatively prime integers. 
 
(8)                           
 
  (3)     (2)        (4) 
 
 Г9(Z)Г16 (𝑍𝑍) 
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Clearly  Γ9(Z) ∩ Γ16(Z) = ∅. 
 
The next example shows that the converse of Proposition3.2 may not be true in general. 
 
Example: 15 The graphs Г4(Z) and  Г6(Z) are disjoint, while 4 and 6 are not relatively prime integers. 
 
The next result gives a sufficient condition for two element ideal graphs to be identical. 
 
Theorem: 3.3 Let x, y∈Z-{0, 1} be non-primes. Then Г𝑥𝑥(𝑍𝑍)=Г𝑦𝑦(𝑍𝑍)  if and only if x=y. 
 
Proof: Let Гx (Z)=Гy (Z). Then x, y∈(a)(b) for  every edge   (a)—(b) of Г𝑥𝑥(𝑍𝑍) and Г𝑦𝑦 (𝑍𝑍). Then there exist s, r∈Z such 
that x=rab and y=sab. This implies that x∈(ra)(b)and𝑦𝑦 ∈(sa)(b), hence(ra)—(b) and (sa)—(b) are edges 
inГ𝑥𝑥(𝑍𝑍)=Г𝑦𝑦 (𝑍𝑍). This yields that y∈(ra)(b) and 𝑥𝑥 ∈(sa)(b), it follows that there exist  integers t and w such that 
y=trab=tx  and  x=wsab=wy . This implies that  x|y  and  y|x. Thus x=y. 
 
Example: 16 The graphs Г4(Z) and Г8(Z)are not identical, while 4≠ 8. 
 
It is natural to ask whether  Гx (Z) and  Гy (Z) are isomorphic for every x, y∈Z-{0,∓1}, the answer is negative, as the 
following example shows. 
 
Example: 17 ClearlyГ6(Z)andГ12(𝑍𝑍)are not isomorphic, since. The number of vertices of Г6(Z)  is equal to 2, while 
the number of vertices of Г12 (Z)  is equal to 4. 
 
The next result gives a condition which ensure the isomorphism between the element ideal graph of the ring of integers 
and the annihilating ideal graph of the ring of integers modulon.  
 
Theorem: 4.2.4 If  n∈Z+-{1} is  not  prime  number,  then Гn(Z) ⩬AG(Zn). 
 
Proof: Since n>1 is not prime, then n has some divisors. We denote all positive divisors of n by α1, α2,...,αm with 
α1 < α2 <...<αm  for some m∈Z+. Since α1, α2,...,αm  are divisors of n , then there exist β1, β2,…,βm  such that n=αkβk  
, for every k=1,2,…,m. By Lemma4.1.1, the only ideal vertices of Гn(Z) are  (α1), (α2),..., (αm ). It is clear that the only 
ideal vertices of AG(Zn)  are ideals (α1���), (α2���),..., (αm����)  of  Zn. Define the mapping f:Гn(Z)→AG(Zn)  by f((αk))= (βk���). 
Obviously, f is onto. Now we give two ideal vertices (αl) and (αk) of Гn(Z)  such that f((αl))=f((αk)). This implies that 
(βl�) = (βk���). Since βl ∈ (βl�) = (βk���), then βl − βk = sn for some integer s. This means that n|(βl − βk). And this 
statement is true only when αl = αk . This implies that (α1)=(α2). Thus f is one to one. Suppose that (αl) and (αk) are 
adjacent ideal vertices in Гn(Z). This means that n∈ (αl)(αk).Then there exists an integer r such that n=rαlαk .Since 
n=αlβl = αkβk , then (αlβl)(αkβk) =(rαlαk)(rαlαk).Then the cancellation givesβlβk = r2αkαl=rn. Thus βl�βk���=0�. This 
implies that f((αl))f((αk))=(βl� )(βk���)=(0�). This means that f((α1)) and f((α2)) are adjacent ideal vertices in AG(Zn). 
Thus f preserves the adjacency property. Hence Гn(Z) ⩬AG(Zn).  
 
Example: 18 The graphs Г12(Z) and  AG(Z12) can be drown as follows. 
 
  (2)     (3)   (6�)          (4�) 
 
 
 
 
 (6)           (4)    (2�)      (3�)     
 
 Г12(Z) AG(Z12) 

 
Clearly Г12(Z) ⩬AG(Z12). 
 
The following corollaries follow from Theorem3.4. 
 
Corollary: 3.5 If  n>1  is  a  nonprime  integer, then  Гn(Z) is a finite connected graph with diameter less than or equal 
to 3, and the girth  less than or equal to 4.  
 
Proof: From Theorem1.4, the graph AG(Zn) is a finite connected graph with diameter less than or equal to 3, and the 
girth less than or equal to 4. Then by Theorem3.4, the graph Гn(Z) is also connected with diameter less than or equal to 
3, and the girth  less than or equal to 4. 
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Corollary: 3.6 If n∈Z+-{1} is not prime number, then Гn(Z) contains a subgraph which isomorphic to Гn(Z). 
 
Proof: From Theorem1.5, there exists a subgraph G of  Гn(Z) such that G⩬AG(Zn). Then by Theorem 3.4,  G⩬Гn(Z). 
 
Corollary: 3.7 If p is a prime number, then  Γpn (Z) has diameter 2 for every  n∈Z+-{1, 2, 3}. 
 
Proof: First we prove that diam(AG(𝑍𝑍𝑝𝑝𝑛𝑛 ))=2. Obviously the ideal vertices of  AG(Zpn ) are (𝑝𝑝1���) , (𝑝𝑝2���) ,…, (𝑝𝑝𝑛𝑛−1������). Let 
(𝑝𝑝𝑚𝑚����) and (𝑝𝑝𝑘𝑘���) be any two distinct ideal vertices of AG(Zpn ). Since (𝑝𝑝𝑚𝑚����)(𝑝𝑝𝑛𝑛−1������) = (𝑝𝑝𝑘𝑘���)(𝑝𝑝𝑛𝑛−1������) =(0�)  , then (𝑝𝑝𝑚𝑚����) and 
(𝑝𝑝𝑘𝑘���) are adjacent to (𝑝𝑝𝑛𝑛−1������) in AG(R).This means that the distance between any two distinct ideal vertices of AG(Zpn ) 
is less than or equal to 2. Since the diameter is the maximum distance between any two distinct vertices, then the 
diameter of  AG(Zpn ) is equal to 2 for every n>3.ByTheorem3.4, diam(Γpn (Z)=2  for every n∈Z+-{1,2,3}.  
 
Example: 19 Consider the element ideal graph Γ64(Z). 
 
 
 (2)   
 
 
(25)              
 
(24)         (22)      (23) 
 

 
 
Clearly  the diameter of  Γ64(Z)is equal to 2.  

 
Before we close this section, we give the following result. 
 
Theorem: 3.8 Let n∈Z+ and α1, α2,...,αn  be non-negative fixed integers. Then all graphs of the form 
Г𝑝𝑝1

𝛼𝛼1𝑝𝑝2
𝛼𝛼2 …𝑝𝑝𝑛𝑛𝛼𝛼𝑛𝑛 (𝑍𝑍) are isomorphic, for all choices of distinct prime numbers p1, p2,…, pn.   

 
Proof: Let  p1, p2 ,…, pn  , q1, q2 ,…, qn be  prime numbers with pi≠pj and qi≠qj for all i≠j.Give two graph  
Гp1

α1 p2
α2 …pn

αn (Z) and  Гq1
α1 q2

α2 …qn
αn (Z). Define a mapping f:Гp1

α1 p2
α2 …pn

αn (Z) → Гq1
α1 q2

α2 …qn
αn (Z) by 

f((𝑝𝑝1
𝑠𝑠1𝑝𝑝2

𝑠𝑠2 …𝑝𝑝𝑛𝑛 𝑠𝑠𝑛𝑛 ))=(𝑞𝑞1
𝑠𝑠1𝑞𝑞2

𝑠𝑠2 … 𝑞𝑞𝑛𝑛 𝑠𝑠𝑛𝑛 ) , where s1 , s2 ,…, sn are non-negative integers less than or equal to α1, α2,...,αn  
respectively. Clearly , f is  onto. Let I=(p1

s1 p2
s2 … pn

sn ) and J=(p1
r1 p2

r2 … pn
rn ) be two ideal vertices of 

Гp1
α1 p2

α2 …pn
αn (Z) such that f(I)=f(J). This means that (𝑞𝑞𝑠𝑠1𝑞𝑞2

𝑠𝑠2 … 𝑞𝑞𝑠𝑠𝑛𝑛 )=(𝑞𝑞1
𝑟𝑟1𝑞𝑞2

𝑟𝑟2 … 𝑞𝑞𝑛𝑛𝑟𝑟𝑛𝑛 ). This implies 
thatqs1 q2

s2 … qsn =q1
r1 q2

r2 … qn
rn , since every two ideals of  Z of distinct positive generators are distinct. It follows 

that si=ri, for all i=1, 2,…,n. Thus I=(p1
s1 p2

s2 … pn
sn )=(p1

r1 p2
r2 … pn

rn )=J. Hence f is one to one. 
LetI=(p1

s1 p2
s2 … pn

sn ) and J=(p1
r1 p2

r2 … pn
rn ) be adjacent ideal vertices inГp1

α1 p2
α2 …pn

αn (Z). Then 
𝑝𝑝1

𝛼𝛼1𝑝𝑝2
𝛼𝛼2 … 𝑝𝑝𝑛𝑛𝛼𝛼𝑛𝑛 ∈IJ. From Lemma2.1,p1

s1 p2
s2 … pn

sn   and p1
r1 p2

r2 … pn
rn   divide p1

α1 p2
α2 … pn

αn . Thus si=ri≤ 𝛼𝛼i  
for all i=1, 2,…,n. This implies that  q1

s1 q2
s2 … qn

sn   and q1
r1 q2

r2 … qn
rn   divide  q1

α1 q2
α2 … qn

αn .FromLemma2.1, 
𝑞𝑞1

𝛼𝛼1𝑞𝑞2
𝛼𝛼2 … 𝑞𝑞𝑛𝑛𝛼𝛼𝑛𝑛 ∈ (q1

s1 q2
s2 … qn

sn )(q1
r1 q2

r2 … qn
rn )=f(I)f(J). This means that f(I) and f(J) are adjacent ideal 

vertices in Гq1
α1 q2

α2 …qn
αn (Z). So f preserves the adjacency property. HenceГp1

α1 p2
α2 …pn

αn (Z) and  Гq1
α1 q2

α2 …qn
αn (Z) 

are isomorphic. 
 
Example: 20 Consider the graphs Г30(Z) and  Г154(Z). 
 
   (15)                              (10)                         (77)                     (22) 
 
    (2)                      (3)                                 (2)                      (7)                                   
  
 
 
  (5)                        (11)   
 
 
 
 (6)                                                          (14)    
 

𝛤𝛤30 (𝑍𝑍)𝛤𝛤154 (𝑍𝑍) 
Clearly, Г30(Z) ⩬ Г154(Z). 
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