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ABSTRACT 
In [4] ([5]) we defined a right near – ring N to be 𝛽𝛽1(𝛽𝛽2) if xNy = Nxy(xNy = xyN) for all x, y in N. Following these we 
make an attempt in this paper to study the properties of those near – rings which satisfy the conditions xNy = yxN and 
xNy = Nyx. 
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1. INTRODUCTION 
 
A right near – ring is an algebraic system (N,+,∙) with two binary operations ‘+’and ‘∙’ such that  
(i)  (N, +) is a group with 0 as its identity. 
(ii) (N, ∙) is a semigroup and  
(iii) (x + y) z = xz + yz for all x, y, z in N. 
 
Throughout this paper, N stands for a right near – ring (N, +, ∙) with at least two elements . Obviously, 0n = 0 for all n 
in N. As in [2], a subgroup (M, +) of (N, +) is called (i) a left N – subgroup of N if MN⊂M, (ii) an N – subgroup of N 
if NM⊂M and (iii) an invariant N – subgroup of N if M satisfies both  (i) and  (ii). Again in [2], N is defined to be 
weak commutative if xyz= xzy for all x, y, z in N.  The concept of mate function in N has been introduced in [6] with a 
view to handling the regularity structure with considerable ease. A map ‘f ’from N into N is called (i) a mate function 
for N if x = xf(x) x. (ii) a P3 mate function if in addition, xf(x) = f(x)x for all x in N. By identity 1of N, we mean only the 
multiplicative identity of N. 
 
Basic concepts and terms used but left undefined in this paper can be found in [2]. 
 
2. NOTATIONS 

 
(i)   E denotes the set of all idempotents of N. (e in N is called an idempotent if e2 = e) 
(ii)  L denotes the set of all nilpotents of N. (a in N is nilpotent if ak = 0 for some positive integer k) 
(iii) Nd = {n∈N/ n(x+y) = nx + ny for all x, y in N} - set of all distributive elements of N. 
(iv) C(N) = {n∈N/ nx = xnfor all x in N}- centre of N. 
(v)  N0 = {n∈ N/ n0 = 0} – zero -symmetric part of N. 
 
3. PRELIMINARY RESULTS 

 
We freely make use of the following results and designate them as R(1), R(2),...etc 
 
R(1)N has no non – zero nilpotent elements if and only if x2 = 0⇒ x = 0 for all x in N. (Problem 14, p.9 of [3]). 
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R(2) If f  is a mate function for N, then for every x in N, xf(x), f(x)x∈E and Nx =Nf(x)x, xN= xf(x)N. (Lemma 3.2 of [6]) 

 
R(3) If L={0} and N=N0 then (i) xy = 0 ⇒yx = 0 for all x, y in N (ii) N has Insertion of Factors Property – IFP for short  
(i. e) for x, y in N, xy=0 ⇒ xny=0 for all n in N. If Nsatisfies (i) and (ii) then N is said to have (∗, IFP) (Lemma 2.3 of 
[6]) 

 
R(4) Any weak commutative near – ring with a left identity is pseudo commutative (i.e) xyz = zyx for all x, y, z in N. 
(Proposition 2.8 of [7]) 

 
R(5) N has strong IFP if and only if for all ideals I of N, and for all x, y, n∈N, xy∈ I⇒ xny ∈ I (Proposition 9.2,p. 289 
of [2]). 
 
𝟒𝟒.  𝜷𝜷3 AND 𝜷𝜷4 NEAR – RINGS 
 
In this section we define 𝛽𝛽3 and 𝛽𝛽4 near – rings and give certain examples of these new concepts. 
 
Definition: 4.1 Let N be a right near– ring. If for all x, y in N, xNy =yxN (xNy = Nyx) then we say N is a 𝛽𝛽3            
near – ring (𝛽𝛽4 near – ring). 
 
Examples: 4.2  
(a) Let (N, +) be the Klein’s four group with multiplication defined as per scheme 7, p.408 of Pilz [2] 
 

∙ 0 a b c 
0 0 0 0 0 
a 0 a 0 a 
b 0 0 b b 
c 0 a b c 

 
This near – ring N is 𝛽𝛽3 as well as 𝛽𝛽4.  Here, the identity function serves as a mate function. 
 
(b) Then near – ring (N, +, ∙) where (N,+) is defined on Klein’s four group with N={0,a,b,c} and ‘∙’ defined as per 
scheme 14, p.408 of Pilz [2] 
 

. 0 a b c 
0 0 0 0 0 
a 0 a 0 c 
b 0 0 0 0 
c 0 a 0 c 

 
is neither 𝛽𝛽3 (since aNc≠ caN) nor 𝛽𝛽4 (since aNc≠ Nca ). It is worth noting that this near – ring does not admit mate 
functions. 
 
(c) Let N be an arbitrary near –ring. Let I be the ideal generated by {anb – ban′ / a, b, n, n′are in N}. The factor near     
– ring N ̅ = N/I is a 𝛽𝛽3 near – ring. 
 
(d) Let N be an arbitrary near – ring. Let I be the ideal generated by {an b – n′ba/a, b, n, n′ are in N}.The factor near     
– ring N ̅=N/I is a 𝛽𝛽4 near – ring 
 
5.𝜷𝜷3 near – Ring 
 
In this section we study some of the important properties of a 𝛽𝛽3 near – rings and give a complete characterization of 
such near – rings. 
 
Proposition: 5.1 If N is a 𝛽𝛽3near – ring, then xNx = x2 N for all x in N. 
 
Proof: When N is a𝛽𝛽3near – ring, by definition, for all x, y in N, xNy = yxN                                                                 (1)  
 
The result follows by replacing y by x in (1) 
 
Remark: 5.2 The converse of Proposition 5.1 is not true. For example, we consider the near- ring (N, +, ∙) where (N, +) 
is the Klein’s four group {0, a, b, c} and ‘∙’ is defined as per scheme 3,p.408 of  Pilz [2]  
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. 0 a b c 
0 0 0 0 0 
a 0 0 a a 
b 0 0 b b 
c 0 0 c c 

 
satisfies the condition xNx= x2N for all x in N. But it is not a 𝛽𝛽3 near – ring. [Since aNb ≠ baN]. 
 
Proposition: 5.3 Let N be a 𝛽𝛽3 near – ring with identity 1. Then we have the following: 
(i)   N is zero symmetric. 
(ii)  N has strong IFP. 
(iii) Every N –subgroup of N is invariant. 
(iv) Every left N–subgroup of N is an N - subgroup if N = Nd. 
 
Proof: Let N be a 𝛽𝛽3near – ring. Then for all x, y in N, xNy = yxN                                                                                (1) 
 
(i)  Putting x=1 in (1), we get, 1Ny =y1N for all y in N. When y=0, N0 =0N= {0}. It follows that N is zero-symmetric. 
 
(ii) Let I be an ideal of N                                                                                                                                                   (2)  
 
and let xy∈ I.Now, y1x∈yNx [since 1∈N] = xyN [by (1)] ∈ IN⊆I[by (2)]. 
  
Therefore, yx∈I                                                                                                                                                                 (3) 
 
Now, for any n in N, we have xny∈xNy = yxN [by (1)]∈IN ⊆ I [by(2)]. From R(5), it follows that N has strong IFP. 
 
(iii) Let S be any N-subgroup of N. Then S =∑ Nxx∈s                                                                                                        (4)  
 
Now, NxN = Nx1N = N1Nx [by (1)] = NNx⊂Nx⇒  NxN ⊂  Nx                                                                                    (5)  
 
Therefore, SN = [∑ Nxx∈s ].N [by (4)] ⊂  ∑ NxN ⊂ ∑ Nx  x∈sx∈s [by(5)] = S[by(4)].  
 
Consequently S is an invariant N-subgroup. 
 
(iv) Let S be any left N-subgroup of N where N = Nd. Then S = ∑ xNx∈s                                                                         (6) 
 
Now, NxN = 1NxN = x1NN [by (1)] = xNN⊂ xN [since SN⊂ S] ⇒ NxN ⊂ xN                                                            (7) 
 
Hence NS= N[∑ xNx∈s ][by(6)]⊂ ∑ NxN ⊂ ∑ xNx∈sx∈s [by(7)] = S[by(6)]. Consequently, every left N – subgroup is an 
N – subgroup. 
 
Proposition: 5.4 Any homomorphic image of a 𝛽𝛽3 near–ring is also a 𝛽𝛽3 near–ring. 
 
Proof: Straight forward. 
 
Theorem: 5.5 Every 𝛽𝛽3 near – ring N is isomorphic to a subdirect product of subdirectly irreducible 𝛽𝛽3 near – rings. 
 
Proof: By Theorem 1.62, p. 26 of Pilz [2], N is isomorphic to a subdirect product of subdirectly irreducible near–rings 
Ni’s and each Ni is a homomorphic image of N under the projection map 𝜋𝜋i. The rest of the proof is taken care of by 
Proposition 5.4. 
 
We furnish below a necessary and sufficient condition for a 𝛽𝛽3 near – ring to admit mate functions. 
 
Proposition: 5.6 Let N be the 𝛽𝛽3 near - ring. Then N admits mate functions if and only if x∈ x2N for all x in N. 
 
Proof: We first observe from Proposition 5.2 that, since N is 𝛽𝛽3, xNx=x2N for all x in N                                              (1) 
 
For the ‘only if part’, we assume that f is a the mate function for N. Then for all x in N, x=xf(x) x∈ 𝑥𝑥𝑥𝑥𝑥𝑥. It follows that 
x ∈x2N. 
 
For the ‘if part ’let x∈x2N for all x in N. Appealing to (1) we get x=xnx for some n in N. By setting n=f(x), we see that f 
is a mate function for N. 
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In the following results we assume that N has a mate function. 
 
Theorem: 5.7 Let N=Nd be a zero – symmetric 𝛽𝛽3 near – ring with a mate function. Then we have, 
 
(i)    L={0} 
(ii)  N has (*, IFP) 
(iii) E⊂C(N) 
(iv) xN∩yN=yNxN = xyN for all x, y in N. 
 
Proof: (i) Since f is a mate function for N, Proposition 5.6 demands that x∈ x2N for all x in N. Therefore, x=x2n for 
some n in N. Suppose x2 = 0. Clearly then x = 0. Now, R(1) guarantees that L={0}. 
 
(ii) By (i) L= {0}. Now, R(3) guarantees that N has (∗,IFP). 
 
(iii) Let e ∈ E. Since N is β3, eNe = eeN = eN. Therefore, for any n in N, ene = eu and en = eve for some u, v in N. 
   
Now, ene = (eu)e and (en)e = eve. Thus ene = en for all n in N                                                                                       (1) 
 
We also have, e(ne-ene) = 0 [since N=Nd] ⇒  ene(ne-ene) = 0[by(ii)].And ne(ne-ene) = n.0 = 0 [Since N = No].  
 
Consequently, (ne-ene)2 = 0 and (i) guarantees ne-ene = 0. Therefore, ene = ne for all n in N                                       (2) 
 
Combining (1) and (2) we get en = ne for all n in N. Thus E⊂C(N). 
 
(iv) First we show that for any left N-subgroups A and B of N, A∩B = BA. By Proposition 5.3 (iv), A and B are N-
subgroups of N. Now, for x∈A and y∈B, yx∈BN⊂B.Therefore, BA⊂ B                                                                        (3) 
 
Also, yx∈NA⊂ A. Hence BA⊂A                                                                                                                                      (4) 
 
Combining (3) and (4), BA⊂A∩B                                                                                                                                    (5) 
 
On the other hand, if z∈ A∩B then since ‘f’ is a mate function for N, z= zf(z)z∈(BN)A ⊂ BA.  
 
Consequently, A∩B ⊂ BA                                                                                                                                                (6) 
 
Combining (5) and (6) A∩B = BA for all left N–subgroups A, B of N. We know that, xN and yN are left N- subgroups 
of N.  
 
Therefore, xN∩yN=yNxN for all x, y in N.                                                                                                                      (7) 
 
 
On the other hand, if y ∈ N, then, Since f is a mate function for N, yN = (yf(y)y)N ⊂ yNN ⇒xyN⊂xyNN = yNxN 
[since N is 𝛽𝛽3].  
 
Therefore, xyN⊂ yNxN                                                                                                                                                    (8) 
 
For the reverse inclusion, yNxN = xyNN [since N is 𝛽𝛽3]⊂ xyN. Therefore, yNxN⊂xyN                                               (9) 
 
From (8) and (9), yNxN = xyN                                                                                                                                       (10) 
 
for all x, y in N. Combining (7) and (10) we get xN∩yN = yNxN = xyN for all x, y in N. 
 
We furnish below a characterization theorem for 𝛽𝛽3near –ring. 
 
Theorem: 5.8 Let N=Nd be a zero–symmetric near-ring with a mate function f. Then N is𝛽𝛽3 if and only if 
xyN = yxN for all x, y in N and E⊂C(N). 
 
Proof:  For the ‘only if part’, first we observe that E⊂C(N)                                                                                            (1) 
 
[by Theorem 5.7 (iii)]. Since f is a mate function for N. Now, xyN = xN∩y N [by Theorem 5.7(iv)] = yN∩xN = yxN   
[by Theorem 5.7(iv)]. 
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For the ‘if part’, first we show that‘ f ’is a P3 mate function for any x∈N we have x=xf(x)x=x2f(x) [Since 
E⊂C(N)]⇒x(f(x)x – xf(x))=0⇒xf(x)(f(x)x – xf(x))=0 [by Theorem 5.7(ii)] and f(x)x(f(x)x – xf(x))=f(x).0=0 [since 
N=N0]. Consequently, (f(x)x – xf(x))2 = 0 and hence xf(x) = f(x)x ………..…...(7) for all x in N [by R(1)].  
 
Hence f is a P3matefunction.Now, xNy = xNf(y)y = xNyf(y)[by (7)]=x[yf(y)N][Since E⊂C(N)] = xyN = yxN [by 
hypothesis].                                                                                                                
 
𝟔𝟔.  𝜷𝜷4 near – ring 
 
Throughout this section N denotes a 𝛽𝛽4 near–ring. In this section we study some of the important properties. 
 
Proposition: 6.1 If N is a 𝛽𝛽4 near – ring, then xNx =Nx2 for all x in N. 
 
Proof: When N is a  𝛽𝛽4 near-ring, by definition for all x, y in N, xNy = Nyx                                                                (1) 
 
The result follows by replacing y by x in (1). 
 
Remark: 6.2 The converse of Proposition 6.1 is not true. For example, Consider the near – ring (N, +, ∙) where (N, +)  
is the Klein’s four group {0, a, b, c} and ‘∙’ is defined as per scheme 13, p.408 of Pilz [2] 
 

∙ 0 a b c 
0 0 0 0 0 
a 0 a b c 
b 0 0 0 0 
c 0 a b c 

 
Satisfies the condition xNx=Nx2for all x in N. But it is not a 𝛽𝛽4 near – ring [since aNb≠Nba]. 
 
Proposition: 6.3 If N is a 𝛽𝛽4 near – ring, then NxNy = NyNx for all x, y in N. 
 
Proof: Since N is a 𝛽𝛽4 near – ring, we have xNy = Nyx                                                                                                  (1) 
 
for all x, y in N. Now, for any x, y, n in N, (nx) Ny⊂ Nx Ny ⇒ Ny(nx) ⊂ NxNy[by(1)]⇒ NyNx ⊂NxNy                    (2)  
 
On the other hand, (ny) Nx⊂ NyNx⇒Nx(ny) ⊂ NyNx [by(1)] ⇒NxNy⊂ NyNx                                                            (3) 
 
Combining (2) and (3), NxNy=NyNx for all x, y in N. 
 
Remark: 6.4 The converse of Proposition 6.4 is not valid. For example, the near– ring (N, +, ∙) where (N, +) is the 
Klein’s four group {0, a, b, c} and ‘∙’ is defined as per scheme 20, p.408 of Pilz [2] 
 

∙ 0 a b c 
0 0 0 0 0 
a a a a a 
b 0 a b c 
c a 0 c b 

 
satisfies the condition NxNy = NyNx for all x, y in N. But it is not a 𝛽𝛽4 near – ring [since 0Na≠Na0] 
 
Theorem: 6.5 Every weak commutative near – ring with identity is 𝛽𝛽4. 
 
Proof: Let N be a weak commutative near – ring                                                                                                             (1) 
 
Let x, y∈N. For any n∈N, xny = xyn[by(1)] = nyx [byR(4)] ∈Nyx. Thus xNy⊂Nyx                                                      
(2) 
  
On the other hand, for n1 in N, n1yx = xyn1 [by R(4)] = xn1y[by(1)] ∈ xNy.Consequently, Nyx⊂ xNy                          (3) 
  
Combining (2) and (3) we get, N is a β4 near – ring. 
 
Proposition: 6.6 In a 𝛽𝛽4 near – ring, if N=Nd then xM=Mx for all N - subgroups M of N. 
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Proof: Let N be a 𝛽𝛽4 near – ring. Then for any x, y in N, xNy = Nyx                                                                             (1) 
 
Let M=∑ Nyy∈M   be an N - subgroup of N.                                                                                                                       (2) 
 
Then xM = x∑ Nyy∈M  = ∑ x(Ny)y∈M  = ∑ Nyxy∈M  [by(1)] = [∑ Ny]x = Mxy∈M  [by(2)]. 
 
In view of Theorem 5.7 it is worth mentioning that a 𝛽𝛽4 near – ring also possesses certain properties which are satisfied 
by a 𝛽𝛽3 near – ring as in the following result. 
 
Theorem: 6.7 Let N be a zero-symmetric 𝛽𝛽4 near – ring with mate function. Then we have, 
(i)     L={0} 
(ii)   N has (∗, IFP) 
(iii)  E⊂C(N) 
(iv)  Nx∩Ny = NyNx= Nxy for all x, y in N. 
 
Proof:  
(i) Since f  is a mate function for N, we have x=xf(x) x∈xNx. It follows that x∈Nx2 [by Proposition 6.1]. Therefore, 
x=nx2 for some n in N. Suppose x2 = 0. Clearly, then x=0. Now, R(1) guarantees that L={0}. 
 
(ii) By (i) L={0}. Now, R(3) guarantees that N has (∗,IFP). 
 
(iii) Let e∈E. Since N isβ4, eNe = Nee = Ne. Therefore for any n in N, ene = ue and ne = eve for some u, v in N.  
 
Now, ene = eue and ene = eve. Thus ene = ne for all n in N                                                                                            (1) 
   
We also have, (en – ene)e = 0⇒e(en – ene)=0 [by(ii)]⇒ene(en – ene)= 0[by(ii)]. 
 
Consequently, (en – ene)2 = 0 and (i) guarantees ene=en for all n in N                                                                           (2) 
  
Combining (1) and (2) we get ne=en for all n in N. Thus E⊂C(N). 
 
(iv) The result follows by replacing the left N–subgroups xN, yN in the proof of Theorem 5.7(iv) by the right N– 
subgroups Nx, Ny respectively. 
 
We furnish below a characterization theorem for 𝛽𝛽4near – ring. 
 
Theorem: 6.8 Let N be a zero – symmetric near – ring with a mate function f. Then N is  𝛽𝛽4 if and only if Nxy = Nyx 
for all x, y in N and E⊂C(N). 
 
Proof: The proof is similar to that of Theorem 5.8. 
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