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ABSTRACT

In [4] ([5]) we defined a right near — ring N to be B1(8,) if XNy = Nxy(xNy = xyN) for all x, y in N. Following these we
make an attempt in this paper to study the properties of those near — rings which satisfy the conditions xNy = yxN and
XNy = Nyx.
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1. INTRODUCTION

A right near — ring is an algebraic system (N,+,-) with two binary operations *+’and ‘-’ such that
(i) (N, +) is agroup with O as its identity.

(i) (N, ) is a semigroup and

(i) (x+y)z=xz+yzforall x,y, zinN.

Throughout this paper, N stands for a right near — ring (N, +, -) with at least two elements . Obviously, On = 0 for all n
in N. As in [2], a subgroup (M, +) of (N, +) is called (i) a left N — subgroup of N if MNcM, (ii) an N — subgroup of N
if NMcM and (iii) an invariant N — subgroup of N if M satisfies both (i) and (ii). Again in [2], N is defined to be
weak commutative if xyz= xzy for all X, y, z in N. The concept of mate function in N has been introduced in [6] with a
view to handling the regularity structure with considerable ease. A map ‘f *from N into N is called (i) a mate function
for N if x = xf(x) x. (ii) a P3 mate function if in addition, xf(x) = f(x)x for all x in N. By identity 10f N, we mean only the
multiplicative identity of N.

Basic concepts and terms used but left undefined in this paper can be found in [2].

2. NOTATIONS

(i) E denotes the set of all idempotents of N. (e in N is called an idempotent if e? = e)

(ii) L denotes the set of all nilpotents of N. (a in N is nilpotent if a* = 0 for some positive integer k)
(iii) Ng = {neN/ n(x+y) = nx + ny for all x, y in N} - set of all distributive elements of N.

(iv) C(N) = {neN/ nx = xnfor all x in N}- centre of N.

(V) No={ne N/n0 =0} — zero -symmetric part of N.

3. PRELIMINARY RESULTS

We freely make use of the following results and designate them as R(1), R(2),...etc

R(1)N has no non — zero nilpotent elements if and only if xX* = 0= x = 0 for all x in N. (Problem 14, p.9 of [3]).
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R(2) If f is a mate function for N, then for every x in N, xf(x), f(x)x€E and Nx =Nf(x)x, xN= xf(x)N. (Lemma 3.2 of [6])

R(3) If L={0} and N=Ngthen (i) xy = 0 =yx =0 for all x, y in N (ii) N has Insertion of Factors Property — IFP for short
(i. e) for x, y in N, xy=0 = xny=0 for all n in N. If Nsatisfies (i) and (ii) then N is said to have (x, IFP) (Lemma 2.3 of

(6])

R(4) Any weak commutative near — ring with a left identity is pseudo commutative (i.e) xyz = zyx for all X, y, z in N.
(Proposition 2.8 of [7])

R(5) N has strong IFP if and only if for all ideals I of N, and for all X, y, neN, xye 1= xny € | (Proposition 9.2,p. 289
of [2]).

4. B3 AND B, NEAR — RINGS
In this section we define B3and B, near — rings and give certain examples of these new concepts.

Definition: 4.1 Let N be a right near— ring. If for all X, y in N, XNy =yxN (xNy = Nyx) then we say N is a 3
near — ring (84 near — ring).

Examples: 4.2
(a) Let (N, +) be the Klein’s four group with multiplication defined as per scheme 7, p.408 of Pilz [2]

O T 9 O
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This near —ring N is 83 as well as 84. Here, the identity function serves as a mate function.

(b) Then near — ring (N, +, -) where (N,+) is defined on Klein’s four group with N={0,a,b,c} and ‘-’ defined as per
scheme 14, p.408 of Pilz [2]

O T 2 O

o O O Oo|o
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is neither B85 (since aNc= caN) nor 8,4 (since aNc= Nca ). It is worth noting that this near — ring does not admit mate
functions.

(c) Let N be an arbitrary near —ring. Let | be the ideal generated by {anb — ban’ / a, b, n, n‘are in N}. The factor near
—ring N'= N/l is a 83 near — ring.

(d) Let N be an arbitrary near — ring. Let | be the ideal generated by {an b — n'ba/a, b, n, n" are in N}.The factor near
—ring N=N/I is a 84 near — ring

5. B3 near — Ring

In this section we study some of the important properties of a 5 near — rings and give a complete characterization of
such near — rings.

Proposition: 5.1 If N is a Bsnear — ring, then xNx = x?N for all x in N.
Proof: When N is afsnear — ring, by definition, for all x, y in N, XNy = yxN 1)
The result follows by replacing y by x in (1)

Remark: 5.2 The converse of Proposition 5.1 is not true. For example, we consider the near- ring (N, +, -) where (N, +)
is the Klein’s four group {0, a, b, ¢} and “-” is defined as per scheme 3,p.408 of Pilz [2]
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satisfies the condition xNx= x°N for all x in N. But it is not a 83 near — ring. [Since aNb # baN].

Proposition: 5.3 Let N be a 85 near — ring with identity 1. Then we have the following:

(i) N is zero symmetric.

(if) N has strong IFP.

(iii) Every N —subgroup of N is invariant.

(iv) Every left N—subgroup of N isan N - subgroup if N = Ng.

Proof: Let N be a 8snear — ring. Then for all x, y in N, XNy = yxN Q)
(i) Putting x=1in (1), we get, 1Ny =y1N for all y in N. When y=0, NO =ON= {0}. It follows that N is zero-symmetric.
(ii) Let I be an ideal of N 2
and let xye 1.Now, y1xeyNx [since 1eN] = xyN [by (1)] € INSI[by (2)].

Therefore, yxel 3)
Now, for any n in N, we have xnyexNy = yxN [by (1)]€IN < I [by(2)]. From R(5), it follows that N has strong IFP.
(iii) Let S be any N-subgroup of N. Then S =), . Nx 4)
Now, NxN = Nx1IN = N1INx [by (1)] = NNxcNx= NxN c Nx (5)
Therefore, SN = [X,cs NX].N [by (4)] € Y, NxN c ¥, . Nx [by(5)] = S[by(4)].

Consequently S is an invariant N-subgroup.

(iv) Let S be any left N-subgroup of N where N = Ng. Then S =Y., < xN (6)
Now, NxN = INxN = xINN [by (1)] = xXNNc xN [since SNc S] = NxN < xN (7

Hence NS= N[Y,es xN][by(6)]C Yyes NxN € ¥, . xN[by(7)] = S[by(6)]. Consequently, every left N — subgroup is an
N — subgroup.

Proposition: 5.4 Any homomorphic image of a 83 near—ring is also a 85 near—ring.

Proof: Straight forward.

Theorem: 5.5 Every B3 near — ring N is isomorphic to a subdirect product of subdirectly irreducible 3 near — rings.
Proof: By Theorem 1.62, p. 26 of Pilz [2], N is isomorphic to a subdirect product of subdirectly irreducible near-rings
N;’s and each N; is a homomorphic image of N under the projection map ;. The rest of the proof is taken care of by
Proposition 5.4.

We furnish below a necessary and sufficient condition for a 83 near — ring to admit mate functions.

Proposition: 5.6 Let N be the 85 near - ring. Then N admits mate functions if and only if x€ x*N for all x in N.

Proof: We first observe from Proposition 5.2 that, since N is 83, XNx=x*N for all x in N (€D)]

For the “only if part’, we assume that f is a the mate function for N. Then for all x in N, x=xf(x) x€ xNx. It follows that
2
X €x°N.

For the “if part ’let xex?N for all x in N. Appealing to (1) we get x=xnx for some n in N. By setting n=f(x), we see that f
is a mate function for N.

© 2014, RIPA. All Rights Reserved 497



G. Sugantha*1 and R. Balakrishnan’ / Some Special Near — Rings / IRJPA- 4(4), April-2014.
In the following results we assume that N has a mate function.

Theorem: 5.7 Let N=Nq be a zero — symmetric 3 near — ring with a mate function. Then we have,

(i) L={0}
(ii) N has (*, IFP)
(i) ECC(N)

(iv) xNNyN=yNxN = xyN for all x, y in N.

Proof: (i) Since f is a mate function for N, Proposition 5.6 demands that x& x°N for all x in N. Therefore, x=x’n for
some n in N. Suppose x* = 0. Clearly then x = 0. Now, R(1) guarantees that L={0}.

(i) By (i) L= {0}. Now, R(3) guarantees that N has (,IFP).

(iii) Let e € E. Since N is B3, eNe = eeN = eN. Therefore, for any nin N, ene = eu and en = eve for some u, v in N.
Now, ene = (eu)e and (en)e = eve. Thus ene = en forall nin N Q)
We also have, e(ne-ene) = 0 [since N=Ny] = ene(ne-ene) = 0[by(ii)].And ne(ne-ene) = n.0 = 0 [Since N = N,].
Consequently, (ne-ene)? = 0 and (i) guarantees ne-ene = 0. Therefore, ene = ne for all nin N 2
Combining (1) and (2) we get en = ne for all n in N. Thus ECC(N).

(iv) First we show that for any left N-subgroups A and B of N, AnB = BA. By Proposition 5.3 (iv), A and B are N-

subgroups of N. Now, for x€A and yeB, yxeBNcB.Therefore, BAc B (3)
Also, yxeNAcC A. Hence BACA 4)
Combining (3) and (4), BACANB (5)

On the other hand, if ze ANB then since ‘f’ is a mate function for N, z= zf(z)ze(BN)A c BA.
Consequently, AnNB c BA (6)

Combining (5) and (6) AnB = BA for all left N-subgroups A, B of N. We know that, XN and yN are left N- subgroups
of N.

Therefore, XNNyN=yNxN for all x, y in N. @)

On the other hand, if y € N, then, Since f is a mate function for N, yN = (yf(y)y)N € yNN =xyNcxyNN = yNxN
[since N is B3].

Therefore, xyNc yNxN ©))
For the reverse inclusion, yNxN = xyNN [since N is $3]c xyN. Therefore, yYNXNcxyN 9)
From (8) and (9), yNxN = xyN (10)

for all x, y in N. Combining (7) and (10) we get XNNyN = yNxN = xyN for all x, y in N.
We furnish below a characterization theorem for gsnear —ring.

Theorem: 5.8 Let N=Ny be a zero—symmetric near-ring with a mate function f. Then N isg; if and only if
xyN = yxN for all x, y in N and ECC(N).

Proof: For the ‘only if part’, first we observe that ECC(N) (1)

[by Theorem 5.7 (iii)]. Since f is a mate function for N. Now, xyN = xNny N [by Theorem 5.7(iv)] = yNNxN = yxN
[by Theorem 5.7(iv)].
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For the ‘if part’, first we show that* f ’is a P; mate function for any x€N we have x=xf(x)x=x*f(x) [Since
EcC(N)]=x(f(x)x — xf(x))=0=xf(x)(f(x)x — xf(x))=0 [by Theorem 5.7(ii)] and fO)x(f(x)x — xf(x))=f(x).0=0 [since
N=N,]. Consequently, (f(x)x — xf(x))> = 0 and hence xf(x) = fO)X .......coco...... (7) for all x in N [by R(1)].

Hence f is a Psmatefunction.Now, xNy = xNf(y)y = xNyf(y)[by (7)]=x[yf(y)N][Since ECC(N)] = xyN = yxN [by
hypothesis].

6. Bsnear —ring

Throughout this section N denotes a 8,4 near—ring. In this section we study some of the important properties.
Proposition: 6.1 If N is a 8, near — ring, then xNx =Nx?for all x in N.

Proof: When N is a B, near-ring, by definition for all X, y in N, XNy = Nyx 1)
The result follows by replacing y by x in (1).

Remark: 6.2 The converse of Proposition 6.1 is not true. For example, Consider the near — ring (N, +, -) where (N, +)
is the Klein’s four group {0, a, b, ¢} and “-” is defined as per scheme 13, p.408 of Pilz [2]

O T 29 O

o O O Oo|o
L O v O
T O T O|T
O O 0O O|o

Satisfies the condition xNx=Nx?for all x in N. But it is not a 8, near — ring [since aNb=Nba].

Proposition: 6.3 If N is a 84 near — ring, then NxNy = NyNx for all x, y in N.

Proof: Since N is a 8,4 near — ring, we have XNy = Nyx Q)
for all x, y in N. Now, for any x, y, nin N, (nx) Nyc Nx Ny = Ny(nx) c NxNy[by(1)]= NyNx cNxNy 2
On the other hand, (ny) Nxc NyNx=Nx(ny) € NyNx [by(1)] =NxNyc NyNx (3)

Combining (2) and (3), NxNy=NyNx for all x, y in N.

Remark: 6.4 The converse of Proposition 6.4 is not valid. For example, the near- ring (N, +, -) where (N, +) is the
Klein’s four group {0, a, b, c} and ‘-’ is defined as per scheme 20, p.408 of Pilz [2]

O T 2 O

D O D OO
o 2 @ Ol
O T 9 O|lT
o O 2 OO0

satisfies the condition NxNy = NyNx for all x, y in N. But it is not a 84 near — ring [since ONa#=Na0]
Theorem: 6.5 Every weak commutative near — ring with identity is 3.
Proof: Let N be a weak commutative near — ring 1)

Let x, yEN. For any neN, xny = xyn[by(1)] = nyx [byR(4)] eNyx. Thus XNycNyx
)

On the other hand, for n; in N, nyyx = xyn; [by R(4)] = xnyy[by(1)] € xNy.Consequently, Nyxc xNy 3)
Combining (2) and (3) we get, N is a 34 near — ring.
Proposition: 6.6 In a 84 near — ring, if N=Ng then xM=Mx for all N - subgroups M of N.
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Proof: Let N be a 84 near —ring. Then for any x, y in N, XNy = Nyx Q)
Let M=}, em Ny be an N - subgroup of N. 2
Then XM = XZ, e Ny = yen X(Ny) = Zyen Nyx [by(1)] = [Zyem Nylx = Mx [by(2)].

In view of Theorem 5.7 it is worth mentioning that a 8, near — ring also possesses certain properties which are satisfied
by a 85 near — ring as in the following result.

Theorem: 6.7 Let N be a zero-symmetric 84 near — ring with mate function. Then we have,

() L={0}

(i) N has (*, IFP)

(iii) EcC(N)

(iv) NxNNy = NyNx= Nxy for all x, y in N.

Proof:

(i) Since f is a mate function for N, we have x=xf(x) xéxNx. It follows that xeNx? [by Proposition 6.1]. Therefore,
x=nx?for some n in N. Suppose x* = 0. Clearly, then x=0. Now, R(1) guarantees that L={0}.

(i) By (i) L={0}. Now, R(3) guarantees that N has (x,IFP).

(iii) Let e€E. Since N isB4, eNe = Nee = Ne. Therefore for any n in N, ene = ue and ne = eve for some u, v in N.

Now, ene = eue and ene = eve. Thus ene = ne forallnin N 1)
We also have, (en — ene)e = 0=¢e(en — ene)=0 [by(ii)]=ene(en — ene)= O[by(ii)].

Consequently, (en — ene)® = 0 and (i) guarantees ene=en for all n in N 2

Combining (1) and (2) we get ne=en for all n in N. Thus ECC(N).

(iv) The result follows by replacing the left N—subgroups xN, yN in the proof of Theorem 5.7(iv) by the right N—
subgroups Nx, Ny respectively.

We furnish below a characterization theorem for S4near — ring.

Theorem: 6.8 Let N be a zero — symmetric near — ring with a mate function f. Then N is g, if and only if Nxy = Nyx
for all x, y in N and ECC(N).

Proof: The proof is similar to that of Theorem 5.8.
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