International Research Journal of Pure Algebra -4(4), 2014, 488-494 Available online through www.rjpa.info

ORDER TOPOLOGY AND UNIFORMITY ON A-METRIC SPACE

B. V. Subba Rao¹, Phani Yedlapalli^{*2} and Akella Kanakam³

¹Professor of Mathematics (Retd.), Sri Y. N. College, NARSAPUR-534275, (A.P.), India.

²Associate Professor, Department of Mathematics, Swarnandhra College of Engineering & Technology Seetharamapuram, Narsapur-534275, (A.P.), India.

³Assistant Professor, Department of Mathematics, Chaitanya Institute of Science & Technology, Kakinada-533005, (A.P.), India.

(Received on: 27-03-14; Revised & Accepted on: 21-04-14)

ABSTRACT

"Order convergence" of a sequence $\{x_n\}$ is introduced in an A-metric space (X, A, d) [14]. Order Topology and its properties are studied in this space; we obtained a base for some Uniformity on X.

Key words: A-metric space, Order convergence of sequence, Order closed sets, Order Topology.

1. INTRODUCTION

In this paper, we introduced the "Order convergence" of a sequence $\{x_n\}$ in an A-metric space (X, A, d) [14], and we proved that Order Topology in A-metric space satisfies T_1 -separation axiom and also we obtained a necessary and sufficient condition for a subset V of X to be open in the Order Topology on an A-metric space (X, A, d), in terms of a convergent sequence in X. If Y is any arbitrary Topological space, (X, A, d) is an A-metric space and $\phi: X \to Y$ is a mapping, then ϕ is continuous, if and only if, $x_i \to x \Rightarrow \phi(x_i) \to \phi(x)$.

Further, given an A-metric space (X, A, d), we obtained a base for some Uniformity on X, in such a way that, this base induces the usual Uniformity on any usual metric space (X, d), when it is viewed as a A-metric space (X, A, d), where $A = \mathbb{R}$ (set of real numbers).

2. ORDER TOPOLOGY AND A UNIFORMITY ON AN A-METRIC SPACE

In this section, we introduce "Order convergence," "Order closed set," "Order Topology" and a Uniformity on an Ametric space (X, A, d).

Definition: 2.1 A Lattice ordered Autometrized Algebra $A = (A, +, \le, *)$ [10] is called a Representable Autometrized Algebra, if and only if, A satisfies the following:

- (i) $A = (A, +, \leq, *)$ is a semi regular Autometrized algebra
- (ii) for every $a \in A$, all the mappings $x \mapsto a + x, x \mapsto a \lor x, x \mapsto a \land x$ and $x \mapsto a * x$ are contractions (A mapping $f: A \to A$ is a contraction w.r.to *, if and only if, $f(x) * f(y) \le x * y$ for all x, y in A).

Definition: 2.2 Let X be a non empty set, let $A = (A, +, \le, *)$ be a Representable Autometrized Algebra, let $d: X \times X \to A$ be a mapping satisfying the following properties of a distance function $(M_1):d(a,b) \ge 0$, for all a, b in X, with equality occurring, if and only if, a = b (non-negativity) $(M_2):d(a,b)=d(b,a)$, for all a, b in X (Symmetry) $(M_3):d(a,c) \le d(a,b)+d(b,c)$, for all a, b, c in X (triangle in equality) Then, (X, A, d) is said to be an A-metric space.

Definition: 2.3 Let (X, A, d) be an A-metric space. A sequence $\{x_n\}$ of elements of X is said to converge "In Order" to an element x in X, if and only if, $d(x_n, x) \to 0$ in A, and in case, we write $x_n \to x$.

Result 2.4: In any A-metric space (X, A, d), we have the following

(*i*) $x_i \to x, x_i \to y \implies x = y$ (*ii*) $x_i \to x$, then $x_{n_i} \to x$ for every subsequence $\{x_{n_i}\}$ of $\{x_i\}$.

Proof: Let (X, A, d) be an A-metric space.

(i) Let $\{x_n\}$ be a sequence in X, such that $x_i \to x$ and $x_i \to y$

Therefore $d(x_i, x) \rightarrow 0$ and $d(x_i, y) \rightarrow 0$.

But, by the triangle inequality of d, we have $d(x, y) \le d(x, x_i) + d(x_i, y)$

Taking limit as $i \to \infty$, we have

$$d(x, y) \le 0 + 0$$

$$\Rightarrow d(x, y) \le 0$$

$$\Rightarrow d(x, y) = 0 \text{, since } d(x, y) \ge 0$$

$$\Rightarrow x = y$$

(ii) Proof: is obvious.

Let us introduce the following

Definition: 2.5 Let (X, A, d) be an A-metric space. A subset *S* of *X* is said to be "Order closed", if and only if, for every convergent sequence in *S*, the Order limit of the sequence is also a member of *S*.

Lemma: 2.6 Let (X, A, d) be any A-metric space. We have

- (i) ϕ , X are Order closed in X
- (ii) Arbitrary intersection of Order closed sets in X is also Order closed in X
- (iii) Finite union of Order closed sets in X is also Order closed in X.

Proof: Let (X, A, d) be an A-metric space.

- (i) Obviously, ϕ and X are Order closed subsets in X.
- (ii) To each $i \in I$, let S_i be an Order closed subset of X.

Put $S = \bigcap_{i \in I} S_i$

© 2014, RJPA. All Rights Reserved

Now, let $\{x_n\}$ be any convergent sequence in S and let $x_n \to x$. $\Rightarrow x_n \in S, \forall n \in N$

$$\Rightarrow x_n \in \bigcap_{i \in I} S_i, \forall n \in N$$
$$\Rightarrow x_n \in S_i \ \forall i \in I \text{ and } \forall n \in N$$

But each S_i is an Order closed set of X

$$\therefore x_n \in S_i \ \forall i \in I \implies x \in \bigcap_{i \in I} S_i = S$$

$$\therefore x \in S$$

$$\therefore S \text{ is also Order closed in } X$$

(iii) Let $S_1, S_2, S_3, ..., S_n$ be Order closed sets in X

Put $S = \bigcup_{i=1}^{n} S_i$, Now, let $\{x_n\}$ be a sequence in S converging to x. \Rightarrow there exist some S_j which contains an infinite subsequence $\{x_{n_j}\}$ of $\{x_n\}$.

But
$$x_n \to x \Longrightarrow x_{n_i} \to x$$
 (Result 2.4 (ii))

But S_i is an Order closed set of X

$$\therefore x \in S_j \Longrightarrow x \in \bigcup_{i=1}^n S_i = S$$

 $\therefore S$ is an Order closed subset of X.

In view of the above Lemma2.6, it follows that the Order closed sets of an A-metric space (X, A, d) are exactly the closed sets of a certain Topology on X, the Order Topology.

Remark: 2.7 If we consider a metric space (X, d) as an A-metric (X, A, d) where $A = \mathbb{R}$, then, it is clear that the Order Topology coincides with the metric Topology.

Now, we show that the Order Topology on an A-metric space (X, A, d) satisfies the T_1 – axiom and obtain a characterization of an open set in the Order Topology in terms of a convergent sequence.

Theorem: 2.8 Let (X, A, d) be an A-metric space with Order Topology in X.

- (i) The Order Topology in X satisfies the T_1 separation axiom. i.e., every subset of X consisting of a single point, is Order closed.
- (ii) A subset V of X is open in the Order Topology, if and only if, for every sequence $\{x_n\}_{n=1,2,3,...}$ in X converging to a point x in V, x_i is in V for all but a finite number of the x_i .

Proof: Let (X, A, d) be an A-metric space with Order Topology.

(i) let $\{x\}$ be any singleton subset of X, Put $B = \{x\} let \{x_n\}$ be any convergent sequence in B converges to x_0 (say)

Since B is a singleton set, $x_n = x, \forall n$

 $\therefore \{x_n\} = \{x, x, x, \dots\}$ is a constant sequence.

Clearly, $x_n \rightarrow x$, $\Rightarrow x_0 = x = x_n \in B$

 \therefore {x} is Order closed.

 \therefore Every subset of X consisting of a single point is Order closed in X.

Thus, the Order Topology in X satisfies T_1 – Separation Axiom.

(ii) Let $V \subseteq X$ and let V be open in the Order Topology in X.

Let $\{x_n\}$ be a convergent sequence in X converges to the point x in V i.e., $x_n \to x$, put C = X - V, \therefore C is Order closed in X.

But $x_n \in X \forall n \in N$ and $x \in V \Longrightarrow x \notin C$

We have to prove that $x_i \in V$ for all but finite number of x_i .

Suppose, if possible, that this is not true.

 $\Rightarrow \text{ there exist a subsequence } \left\{x_{n_i}\right\} \text{ of } \left\{x_n\right\}.$ Where $\left\{x_{n_i}\right\} \notin V, i.e., \left\{x_{n_i}\right\} \text{ is a sequence in } C.$ Since $x_n \to x, \left\{x_{n_i}\right\}$ also tends to x, but C is Order closed. $\therefore x \in C \text{ i.e., } x \notin V$, this is a contradiction.

 $\Rightarrow x_i \in V$ for all but a finite number of x_i .

Conversely, assume that $\phi \neq V \subseteq X$ such that for every sequence $\{x_n\}$ in X, converging to a point x in V, x_i is in V for all but finite number of x_i .

Now, we have to show that V is open in X.

 \therefore it is enough to prove that C = X - V is Order closed in X.

So let $\{x_n\}$ be any convergent sequence in C, such that $x_n \to x$. $\Rightarrow x_n \in C \ \forall n=1,2,3,...$ $\Rightarrow x_n \notin V$

Suppose, if possible that $x \notin C$ so that $x \in V$, thus, $\{x_n\}$ is converging sequence in X, converging to x in V, $\Rightarrow x_i \in V$ for all but a finite number of x_i , which is a contradiction to the fact that $x_n \in C \forall n=1,2,3,...$ and $C \cap V \neq \phi$

 $\therefore \text{ our supposition is false, hence, } x \in C$ $\Rightarrow C \text{ is Order closed in } X.$ $\Rightarrow V \text{ is Order open in } X.$ Hence the theorem.

© 2014, RJPA. All Rights Reserved

Theorem 2.9: Let (X, A, d) be an A-metric space. Let Y be any arbitrary Topological space. A mapping $\phi: X \to Y$ is continuous, if and only if, $x_i \to x$ implies $\phi(x_i) \to \phi(x)$.

Proof: Let (X, A, d) be an A-metric space. Let (Y, τ) be any Topology space.

Let $\phi: X \to Y$ be a mapping.

First assume that
$$x_i \to x \Longrightarrow \phi(x_i) \to \phi(x)$$
 (I)

We have to show that ϕ is continuous. So, let G be any open set in Y, now, let us show that $\phi^{-1}(G)$ is open in X.

For this, it is enough, if we prove that for every sequence $\{x_n\}$ in X converging to x in $\phi^{-1}(G)$, then $x_i \in \phi^{-1}(G)$ for all but a finite number of x_i .

So, let $\{x_n\}$ be a sequence in X converging to $x \in \phi^{-1}(G)$ $\therefore \phi(x) \in G$, by (I), $\phi(x_i) \to \phi(x) \in G$., *i.e.*, $\{\phi(x_n)\}$ is a sequence in Y converging to $\phi(x) \in G$, which is open in Y.

 $\Rightarrow \phi(x_i) \text{ is in } G \text{, for all but a finite number of the } \phi(x_i)$ $\Rightarrow x_i \text{ is in } \phi^{-1}(G) \text{ for all but a finite number of } x_i.$ $\Rightarrow \phi^{-1}(G) \text{ is open in } X.$

Thus, G is open in $Y \Rightarrow \phi^{-1}(G)$ is open in X. $\therefore \phi$ is continuous.

Conversely, let us assume that $\phi: X \to Y$ is a continuous mapping,

Let
$$\{x_n\}$$
 be a convergent sequence in X, converging to x in X.
 $\Rightarrow \phi(x_n) \rightarrow \phi(x)$

Hence the Theorem.

Definition: 2.10 Let (X, A, d) be an A-metric space, let P be a proper dual ideal of the cone C of A satisfying the property (*): Given p in P, there exist q, r in P, such that $q+r \le p$, to each $p \in P$, write $U_p = \{(x, y) \in X \times X / d(x, y) < p\}$.

Theorem: 2.11 Let (X, A, d) be an A-metric space, let P be a proper dual ideal (lattice dual ideal) of the positive cone C of A satisfying the property (*) of the above definition (2.9), then the family $\{U_p\}_{p \in P}$ forms a base for some Uniformity on X.

Proof: Let (X, A, d) be an A-metric space, let P be a proper dual ideal of the positive cone C of A. $\tau = \{U_p \mid p \in P\}$ where $U_p = \{(x, y) \in X \times X \mid d(x, y) < p\}$ in order to show that τ is a base for some uniformity for X, it is enough if we prove the following:

B. V. Subba Rao¹, Phani Yedlapalli^{*2} and Akella Kanakam³ / Order Topology and Uniformity on A-Metric Space / IRJPA- 4(4), April-2014.

- (a) each element of τ contains the diagonal Δ , i.e., $\Delta \subseteq U_p$, $\forall p \in P$.
- (b) $U_p^{-1} = U_p, \forall p \in P$ (c) $U_p \bigcap U_q \supset U_{p \land q}$
- (d) Given $p \in P$, there exist q, r in P such that $U_p \circ U_r \subset U_p$

(a) We have
$$\Delta = \{(x, x) | x \in X\}$$

Now, $(x, y) \in \Delta$
 $\Rightarrow x = y$ and $x \in X$
 $\Rightarrow d(x, y) = d(x, x) = 0$
 $\Rightarrow d(x, y) ($\because P \subseteq C$)
 $\Rightarrow (x, y) \in U_p \forall p \in P$
Thus, $\Delta \subseteq U_p, \forall p \in P$.$

(b) Let
$$p \in P$$
,

$$\therefore U_p = \{(x, y) \in X \times X / d(x, y) < p\}$$

$$\therefore U_p^{-1} = \{(y, x) / d(x, y) < p\}$$

$$= \{(x, y) / d(y, x) < p\} \quad (\because d \text{ is symmetry})$$

$$= U_p$$
Thus, $U_p^{-1} = U_p, \forall p \in P$.

(c) Let
$$p \in P$$
 and $q \in P$
 $\therefore U_{p \wedge q} = \{(x, y)/d(x, y)
Now, $(x, y) \in U_{p \wedge q}$
 $\Rightarrow d(x, y)
 $\Rightarrow d(x, y) < p$ and $d(x, y) < q$ ($\because p \wedge q)
 $\Rightarrow (x, y) \in U_p$ and $(x, y) \in U_q$
 $\Rightarrow (x, y) \in U_p \cap U_q$
Thus, $U_p \cap U_q \supset U_{p \wedge q}$$$$

(d) Let $p \in P$, by hypothesis P satisfies the Property (*) \therefore there exist q, r in P, such that $q + r \le p$.

Now,
$$(x, y) \in U_q \circ U_r$$

 \Rightarrow there exist z in X such that $(x, z) \in U_r$ and $(z, y) \in U_q$
 $\Rightarrow d(x, z) < r$ and $d(z, y) < q$

But by the triangle inequality, we have $d(x, y) \le d(x, z) + d(z, y)$ $\therefore d(x, y) < r + q < p$ ($\because r + q = q + r < p$) $\Rightarrow d(x, y) < p$ $\Rightarrow (x, y) \in U_p$ Thus, $U_p \circ U_r \subset U_p$. Thus, $\tau = \{U_p / p \in P\}$ forms a base for some Uniformity on X. Hence the Theorem.

Remark: 2.12 If (X, d) is any usual metric space and if we view it as an A-metric space (X, A, d). where $A = \mathbb{R}$ and if we write $P = \{x \in \mathbb{R} \mid x > 0\}$, then the family $\{U_p\}_{p \in P}$ is a base for the Usual Uniformity obtained on the given metric space (X, d).

ACKNOWLEDGMENT

We are very much indebted to Dr. K. L. N. Swamy, Emeritus Professor of Mathematics and former Rector of Andhra University, Waltair, A.P-INDIA, for his continuous inspiring encouragement throughout the preparation of this paper.

REFERENCES

- [1] Birkhoff.G, Lattice Theory, American Mathematical Society, Colloquim publications. VolXXV, third edition (1973).
- [2] Swamy K.L.N, Autometrized Lattice Ordered Group I, math. Annalen, Vol 154(1964). 406-412.
- [3] Swamy K.L.N, A General theory of Autometrized Algebras, math. Annalen, Vol 157(1964). 65-74.
- [4] Swamy K.L.N, Dually Residuated Lattice Ordered Semigroups, math. Annalen, Vol 159(1965).105-114.
- [5] Swamy K.L.N, Dually Residuated Lattice Ordered Semigroups II, math.Annalen, Vol 160(1965). 64-71.
- [6] Swamy K.L.N, Dually Residuated Lattice Ordered Semigroups III, math. Annalen, Vol 167(1966). 71-74.
- [7] Swamy K.L.N, Dually Residuated Lattice Ordered Semigroups, Doctoral Thesis, Andhra University 1964.
- [8] Swamy K.L.N, Isometrics in Autometrized Lattice Ordered Semigroup s, Algebra Uni.V., 8(1978), 59-64.
- [9] P.Ranga Rao, Metric spaces with Distances in a Lattice Ordered Groups, Mathematics seminar Notes, Vol.6 (1978).
- [10] B.V.Subba Rao, Lattice Ordered Autometrized Algebras, Mathematics seminar Notes, Vol.6 (1978).
- [11] B.V.Subba Rao, Lattice Ordered Autometrized Algebras-II, Mathematics seminar Notes, Vol.7 (1979), 193-210.
- [12] B.V. Subba Rao, Autometrization of Lattice Ordered Semigroups, Algebra and Order, proc., First Int. Symp. Ordered Algebraic Structures, Luminy, Marseilles (1984), 349-355.
- [13] B.V. Subba Rao, Metric spaces with Distances in a Representable Autometrized Algebras, Communicated to Indian Journal of Pure and Applied Mathematics (2014).

Source of Support: Nil, Conflict of interest: None Declared