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ABSTRACT 
In this paper we introduce the notion of semi 𝜋𝜋 -regular clean rings. Some properties of semi 𝜋𝜋-regular clean ring 
are investigated, which generalize the well-known results of clean ring, and it’s connection with other rings are 
given. 
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1. INTRODUCTION 
 
Throughout this paper 𝑅𝑅 denotes an associative ring with identity. We use the symbol 𝑟𝑟(𝑎𝑎) to denote the right 
annihilator of 𝑎𝑎 in 𝑅𝑅. 
 
Following Han and Nicholson [5], an element 𝑥𝑥 of a ring 𝑅𝑅 is called clean if 𝑥𝑥 can be written as the sum of a unit and 
an idempotent. A ring 𝑅𝑅 is said to be clean if every element of 𝑅𝑅 is clean. The concept of clean ring was first 
introduced by Nicholson [6] as early as 1977. Since then some stronger concepts (e.g. strongly clean, uniquely clean 
and weakly clean) have been considered, see [1, 2, 8]. In this work we consider a ring with every element is the sum 
of semi 𝜋𝜋-regular element and an idempotent element. We call such ring semi 𝜋𝜋-regular clean ring. 
 
2. BASIC PROPERTIES 
 
We start this section with the following definitions. 
 
Definition: 2.1 A ring 𝑅𝑅 is said to be a right semi 𝜋𝜋-regular ring if for all 𝑎𝑎 in 𝑅𝑅, there exist a positive integer 𝑛𝑛 and 𝑏𝑏 
in 𝑅𝑅 such that 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑏𝑏 and 𝑟𝑟(𝑎𝑎𝑛𝑛) = 𝑟𝑟(𝑏𝑏), [7]. 
 
Clearly 𝑏𝑏 is idempotent, since 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑏𝑏, implies 𝑎𝑎𝑛𝑛(1 − 𝑏𝑏) = 0, then 1 − 𝑏𝑏 ∈ 𝑟𝑟(𝑎𝑎𝑛𝑛) = 𝑟𝑟(𝑏𝑏). 
 
Definition: 2.2 A ring R is said to be a right semi 𝜋𝜋-regular clean ring if every element of R can be written as the sum 
of a right semi 𝜋𝜋-regular element and idempotent element. 
 
Next, we shall give the following result. 
 
Lemma: 2.3 If 𝑎𝑎 is a semi 𝜋𝜋-regular element, then−𝑎𝑎 is also a semi 𝜋𝜋-regular element. 
 
Proof: Let 𝑎𝑎 be a semi 𝜋𝜋-regular element in 𝑅𝑅. Then there exist a positive integer 𝑛𝑛 and 𝑏𝑏in 𝑅𝑅, such that 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑏𝑏 
and 𝑟𝑟(𝑎𝑎𝑛𝑛) = 𝑟𝑟(𝑏𝑏). 
 
Now  −𝑎𝑎𝑛𝑛 = −𝑎𝑎𝑛𝑛𝑏𝑏, then clearly 𝑟𝑟(−𝑎𝑎𝑛𝑛) = 𝑟𝑟(𝑏𝑏) 
 
Proposition: 2.4 An element  𝑥𝑥 in a ring 𝑅𝑅 is aright semi 𝜋𝜋-regular clean iff 1 − 𝑥𝑥 is a right semi 𝜋𝜋-regular clean 
element. 
 
Proof: Since 𝑥𝑥 is a right semi 𝜋𝜋-regular clean element, then 𝑥𝑥 = 𝑒𝑒 + 𝑎𝑎, where 𝑒𝑒 is idempotent and 𝑎𝑎 is a right semi 
𝜋𝜋-regular clean element. 
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Hence there exist a positive integer 𝑛𝑛 and 𝑏𝑏in 𝑅𝑅, such that 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑏𝑏 and 𝑟𝑟(𝑎𝑎𝑛𝑛) = 𝑟𝑟(𝑏𝑏). 
 
Now, 

1 − 𝑥𝑥 = 1 − (𝑒𝑒 + 𝑎𝑎) 
                   = (1 − 𝑒𝑒) + (−𝑎𝑎). 

 
Since 1 − 𝑒𝑒 is idempotent and −𝑎𝑎 is a right semi 𝜋𝜋- regular element by (lemma.2.3.).Then 1 − 𝑥𝑥  is a right semi       
𝜋𝜋-regular clean element. 
 
Conversely, assume that 1 − 𝑥𝑥 is a right semi 𝜋𝜋-regular clean element, then 1 − 𝑥𝑥 = 𝑒𝑒 + 𝑎𝑎, where 𝑒𝑒 is idempotent 
and 𝑎𝑎 is a right semi 𝜋𝜋- regular element. Then 

𝑥𝑥 = 1 − 𝑒𝑒 + (−𝑎𝑎) 
 
Thus 𝑥𝑥 is a right semi 𝜋𝜋- regular clean element. 
 
We next turn to give the following main result which characterize semi 𝜋𝜋-regular clean ring in terms of the right 
annihilator of an element in 𝑅𝑅. 
 
Theorem: 2.5 A ring 𝑅𝑅 is a right semi 𝜋𝜋-regular clean ring if and only if 𝑟𝑟(𝑎𝑎𝑛𝑛) is a direct summand for every 𝑎𝑎 in 𝑅𝑅 
and some positive integer 𝑛𝑛. 
 
Proof: Let 𝑅𝑅 be a right semi 𝜋𝜋-regular clean ring and let 𝑥𝑥 in 𝑅𝑅, then 𝑥𝑥 = 𝑒𝑒 + 𝑎𝑎, where 𝑒𝑒 is idempotent element and 𝑎𝑎 
is a right semi 𝜋𝜋-regular element. Then there exist a positive integer 𝑛𝑛, and 𝑏𝑏 in 𝑅𝑅 such that 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑏𝑏 and       
𝑟𝑟(𝑎𝑎𝑛𝑛) = 𝑟𝑟(𝑏𝑏). Now 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑏𝑏 gives 𝑎𝑎𝑛𝑛(1 − 𝑏𝑏) = 0, and this implies 1 − 𝑏𝑏 ∈ 𝑟𝑟(𝑎𝑎𝑛𝑛). If we set 1 = 1 − 𝑏𝑏 + 𝑏𝑏, then 
𝑅𝑅 = 𝑟𝑟(𝑎𝑎𝑛𝑛) + 𝑏𝑏𝑅𝑅. Next we shall prove that (𝑎𝑎𝑛𝑛) ∩ 𝑏𝑏𝑅𝑅 = (0) . Let 𝑦𝑦 ∈ 𝑟𝑟(𝑎𝑎𝑛𝑛) ∩ 𝑏𝑏𝑅𝑅, then 𝑦𝑦 = 𝑏𝑏𝑟𝑟 and 𝑎𝑎𝑛𝑛𝑦𝑦 = 0, for 
some r in 𝑅𝑅. This implies that 𝑎𝑎𝑛𝑛𝑏𝑏𝑟𝑟 = 0, and hence 𝑎𝑎𝑛𝑛𝑟𝑟 = 0, yields 𝑟𝑟 ∈ 𝑟𝑟(𝑎𝑎𝑛𝑛) = 𝑟𝑟(𝑏𝑏). So 𝑏𝑏𝑟𝑟 = 0, and hence 𝑦𝑦 = 0. 
Therefore 𝑅𝑅 = 𝑟𝑟(𝑎𝑎𝑛𝑛) + 𝑏𝑏𝑅𝑅. 
 
Conversely, assume that 𝑟𝑟(𝑎𝑎𝑛𝑛) is a direct summand, then there exists  a right ideal 𝐼𝐼 of 𝑅𝑅, such that 𝑟𝑟(𝑎𝑎𝑛𝑛) + 𝐼𝐼 = 𝑅𝑅. In 
particular, there exist 𝑏𝑏 ∈ 𝑟𝑟(𝑎𝑎𝑛𝑛) and 𝑖𝑖 ∈ 𝐼𝐼 such that 𝑏𝑏 + 𝑖𝑖 = 1. Multiply from the left by 𝑎𝑎𝑛𝑛 , we get 𝑎𝑎𝑛𝑛𝑖𝑖 = 𝑎𝑎𝑛𝑛 . We 
claim that  𝑟𝑟(𝑎𝑎𝑛𝑛) = 𝑟𝑟(𝑖𝑖). Let 𝑥𝑥 ∈ 𝑟𝑟(𝑎𝑎𝑛𝑛), then 𝑎𝑎𝑛𝑛𝑥𝑥 = 0, and hence 𝑎𝑎𝑛𝑛𝑖𝑖𝑥𝑥 = 0, this implies 𝑖𝑖𝑥𝑥 ∈ 𝑟𝑟(𝑎𝑎𝑛𝑛), but 𝑖𝑖𝑥𝑥 ∈ 𝐼𝐼, thus 
𝑖𝑖𝑥𝑥 ∈ 𝑟𝑟(𝑎𝑎𝑛𝑛) ∩ 𝐼𝐼 = (0), therefore 𝑖𝑖𝑥𝑥 = 0, so 𝑥𝑥 ∈ 𝑟𝑟(𝑖𝑖). 
 
Now let 𝑦𝑦 ∈ 𝑟𝑟(𝑖𝑖), then 𝑖𝑖𝑦𝑦 = 0, and hence 𝑎𝑎𝑛𝑛𝑖𝑖𝑦𝑦 = 0, so 𝑎𝑎𝑛𝑛𝑦𝑦 = 0 gives 𝑦𝑦 ∈ 𝑟𝑟(𝑎𝑎𝑛𝑛). Whence it follows that       
𝑟𝑟(𝑎𝑎𝑛𝑛) = 𝑟𝑟(𝑖𝑖). On the other hand every element of 𝑅𝑅 can be written as the sum of 0 and semi 𝜋𝜋- regular element. 
Therefore 𝑅𝑅 is a right semi 𝜋𝜋-regular clean ring. 
 
3. CONNECTION BETWEEN SEMI 𝝅𝝅-REGULAR CLEAN RINGS AND OTHER RINGS 
 
In this section we explore the relation between a right semi 𝜋𝜋-regular clean ring with clean rings and almost clean 
rings. 
 
Following [4], a ring 𝑅𝑅 is said to be almost clean ring, if every element of 𝑅𝑅 is the sum of a non-zero divisor element 
and an idempotent element. 
 
We next turn to prove the following main result. 
 
Theorem: 3.1 let 𝑅𝑅 be a right semi 𝜋𝜋-regular ring with central idempotent, then 𝑅𝑅 is almost clean ring. 
 
Proof: Let 𝑎𝑎 be a non-zero element in 𝑅𝑅, then there exist a positive integer 𝑛𝑛, and 𝑏𝑏 in 𝑅𝑅, such that 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑏𝑏 and 
𝑟𝑟(𝑎𝑎𝑛𝑛) = 𝑟𝑟(𝑏𝑏). 
 
If we set 𝑐𝑐 = (𝑏𝑏 − 1) + 𝑎𝑎, we shall prove that 𝑐𝑐 is a non-zero divisor. 
 
Suppose that that 𝑐𝑐𝑦𝑦 = 0. Then (𝑏𝑏 − 1 + 𝑎𝑎)𝑦𝑦 = 0, this implies 
 
(𝑏𝑏 − 1)𝑦𝑦 = −𝑎𝑎𝑦𝑦, since 𝑏𝑏 is idempotent, then −𝑏𝑏𝑎𝑎𝑦𝑦 = 0, so 𝑎𝑎𝑏𝑏𝑦𝑦 = 0 
 
(𝑏𝑏is central). This gives 𝑎𝑎𝑛𝑛𝑏𝑏𝑦𝑦 = 0, and hence 𝑎𝑎𝑛𝑛𝑦𝑦 = 0.  
 
Thus, 𝑦𝑦 ∈ 𝑟𝑟(𝑎𝑎𝑛𝑛) = 𝑟𝑟(𝑏𝑏), gives 𝑏𝑏𝑦𝑦 = 0. Now (𝑏𝑏 − 1 + 𝑎𝑎)𝑦𝑦 = 0, implies 𝑦𝑦 = 𝑎𝑎𝑦𝑦. But 𝑎𝑎𝑛𝑛𝑦𝑦 = 0  gives             
𝑎𝑎𝑛𝑛−1𝑦𝑦 = 𝑎𝑎𝑛𝑛𝑦𝑦 = 0. Repeat this process 𝑛𝑛 − 1  times we get 𝑦𝑦 = 0. Thus 𝑐𝑐 is a non-zero devisor, whence it follows 
that 𝑎𝑎 = (1 − 𝑏𝑏) + 𝑐𝑐 
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where 1 − 𝑏𝑏  is idempotent and 𝑐𝑐 is a non-zero divisor. 
 
Therefore 𝑅𝑅 is an almost clean ring. 
 
The following result is an immediate consequence of Theorem 3.1. 
 
Corollary: 3.2 Let 𝑅𝑅 be a right semi 𝜋𝜋-regular clean ring with central idempotent and every pair of idempotent are 
orthogonal, then 𝑅𝑅 is almost clean ring. 
 
Proof: Let 𝑅𝑅 be aright semi 𝜋𝜋-regular clean ring and let 𝑥𝑥 ∈ 𝑅𝑅, then 𝑥𝑥 = 𝑒𝑒 + 𝑎𝑎 where 𝑒𝑒 is idempotent and 𝑎𝑎 is a right 
semi 𝜋𝜋-regular element. By Theorem 3.1.𝑎𝑎 = 𝑒𝑒1 + 𝑐𝑐, where 𝑒𝑒1 is idempotent and 𝑐𝑐 is anon-zero divisor then            
𝑥𝑥 = 𝑒𝑒 + 𝑒𝑒1 + 𝑐𝑐. Now, since 𝑒𝑒𝑒𝑒1 = 0 then 𝑒𝑒 + 𝑒𝑒1 is idempotent. Hence 𝑥𝑥 is almost clean element. 
 
Corollary: 3.3 Let 𝑅𝑅 be a semi 𝜋𝜋-regular ring, then for every 𝑎𝑎 ∈ 𝑅𝑅, there exist a positive integer 𝑛𝑛 and a non-zero 
divisor 𝑐𝑐 and idempotent 𝑏𝑏 such that 𝑎𝑎𝑛𝑛 = 𝑏𝑏𝑐𝑐. 
 
Proof: Let 𝑎𝑎 be a non-zero divisor element of 𝑅𝑅, then there exist a positive integer 𝑛𝑛 and 𝑏𝑏 in 𝑅𝑅, such that 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑏𝑏 
and  𝑟𝑟(𝑎𝑎𝑛𝑛) = 𝑟𝑟(𝑏𝑏). If we set 𝑐𝑐 = 𝑏𝑏 − 1 + 𝑎𝑎𝑛𝑛 , then clearly 𝑐𝑐 is a non-zero divisor. Hence 𝑎𝑎𝑛𝑛 = 𝑏𝑏𝑐𝑐. 
 
Following [3], a ring 𝑅𝑅 is said to be a nil-clean if every element of 𝑅𝑅 is the sum of nilpotent element and idempotent 
element. 
 
We end this paper by proving that. 
 
Theorem 3.4: Let 𝑅𝑅 be a right semi 𝜋𝜋-regular clean ring with only idempotent 0 and 1. Then 𝑅𝑅 is clean ring or nil 
ring or almost clean ring. 
 
Proof: Let 𝑥𝑥 be a semi 𝜋𝜋 -regular clean element of 𝑅𝑅 ,Then 𝑥𝑥 = 𝑒𝑒 + 𝑎𝑎 where 𝑒𝑒 is idempotent and 𝑎𝑎 is a right semi    
𝜋𝜋-regular element If 𝑎𝑎 = 0, then 𝑥𝑥 = 𝑒𝑒 = (1 − 𝑒𝑒) + (2𝑒𝑒 − 1) clearly (1 − 𝑒𝑒) is idempotent and (2𝑒𝑒 − 1) is a unit 
element .Hence 𝑅𝑅 is a clean ring. If 𝑎𝑎 ≠ 0 then there exist a positive integer 𝑛𝑛 and 𝑏𝑏 in 𝑅𝑅 such that 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑏𝑏 and 
𝑟𝑟(𝑎𝑎𝑛𝑛) = 𝑟𝑟(𝑏𝑏). Since 𝑏𝑏 is idempotent, then 𝑏𝑏 = 0 𝑜𝑜𝑟𝑟 1. If 𝑏𝑏 = 0, then𝑎𝑎𝑛𝑛 = 0, 𝑎𝑎 is a nilpotent element, there for 𝑅𝑅 is a 
nil-clean ring. On the other hand if 𝑏𝑏 = 1, then (𝑎𝑎𝑛𝑛) = 𝑟𝑟(𝑏𝑏) = 𝑟𝑟(1) = 0. So 𝑎𝑎𝑛𝑛  is a non-zero divisor. Hence 𝑅𝑅 is a 
almost clean ring. 
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