
International Research Journal of Pure Algebra -4(2), 2014, 413-418 

 Available online through www.rjpa.info  ISSN 2248–9037 

International Research Journal of Pure Algebra-Vol.-4(2), Feb. – 2014                                                                                                       413 

 
A MATHEMATICAL MODEL FOR ARC ROUTING PROBLEM – AN EMPIRICAL STUDY 

 
 Dr. Sandeep Tiwari1 & Sopnamayee Acharya2* 

 
1Asst. Professor, S. S. in Mathematics, Vikram University, Ujjain, (M.P.), India. 

 
2Research Scholar, S. S. in Mathematics, Vikram University, Ujjain, (M.P.), India.  

 
 (Received on: 03-02-14; Revised & Accepted on: 17-02-14) 

 
 

ABSTRACT 
The objective of this study is to construct an efficient master route – over an extended planning horizon (more than one 
day). Previously, a deterministic arc-routing problem (DARP) model is used to solve the problem. However, this 
approach ignores the uncertainty in the street segment presence probability—the probability that a street segment 
requires (i.e., there is a demand for) a visit on a particular day. We have considered a new model, namely, the 
probabilistic arc-routing problem (PARP) model which deals with the street segment presence probabilities. PARP 
attempts to minimize the expected length of the master route. It assumes that the street segment presence probabilities 
are independent. Our computational results show that PARP may produce more efficient master routes than DARP by 
taking demand uncertainty into account. 
 
Keyword(s): Arc-routing problem, Deterministic arc-routing model, Probabilistic arc-routing problem, Vehicle routing 
problem. 
 
 
1. INTRODUCTION 
 
Small-package shipping firms rely on daily local delivery and pick-up routes to service their customer base. At the 
operational level, each service provider (SP) is responsible for a specific delivery area (e.g., a service provider’s 
delivery area may contain street segments from a single zip code). In practice, an SP is encouraged to follow a master 
route, which defines a sequence of street segments and the direction in which each street segment is to be traversed for 
his/her delivery area. Street segments are defined by address ranges. For instance, a street segment may contain 
building numbers 1 to 100 on Pithampur Street. On the street network, a street segment can be either one way or two 
ways. On any given day, the exact set of customers to be served along a given street segment may vary. Servicing the 
customers in the same order each day (according to a master route of the delivery area) has various advantages for the 
SPs, including gaining familiarity with their service routes and arriving at regular customers at about the same time 
each day. In addition, this practice improves the efficiency of delivery because packages are loaded into the vehicles in 
accordance with the master routes. For instance, packages with destinations located on the street segments that appear 
early in the master route are placed in the front portion of the cargo area where the SP can easily reach them. Our 
overall objective is to construct efficient master routes for the service areas.  
 
The issue of planning daily service where the set of customers may vary each day was first recognized by Jaillet 
(1985), who proposed the probabilistic travelling salesman problem (PTSP) where each potential customer has a given 
presence probability on any given day. The problem is to find a master route through all of the nodes that will minimize 
the total expected (daily) cost of servicing all of the customers. In the context of small-package local operations, the 
number of possible different street addresses for customer delivery may be really quite large, so the PTSP may not be a 
practical model. It may be more useful to aggregate the set of possible customers into clusters (Campbell 2006). We 
propose to partition them into a set of street segments, where each segment has a presence probability (probability of 
requiring service) on a given day. Given an extended planning horizon (more than one day), if the set of street segments 
requiring service every day remains unchanged, we only need to solve an un--capacitated arc-routing problem once 
during the entire time horizon. However, in reality, the street segments that need to be visited can vary on a daily basis.  
 
Currently, the problem is often approached in a deterministic manner over a single day. More specifically, an arc-
routing problem is solved. The resulting master route is used over the entire planning horizon. On a particular day, the 
route is realized following the predesigned sequence while skipping the street segments that do not require service.  
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We will refer to this approach as the deterministic arc-routing problem (DARP). Essentially, DARP belongs to a family 
of problems known as the mixed rural postman problem (Laporte 1997). One major problem with this approach, as 
pointed out by (Jaillet 1985, 1988), stems from the fact that a good solution when all required street segments are 
present may not remain a good solution when some street segments are skipped. 
 
The uncertainty is to whether a street segment requires service on a particular day suggests that it may be beneficial to 
study the problem in a probabilistic context. One approach models the problem of finding a suitable master route for an 
extended planning horizon as a probabilistic arc-routing problem (PARP) where each street segment has a 
corresponding presence probability on any given day just as in the PTSP.  
 
2. DESCRIPTION OF ARC-ROUTING PROBLEMS 
 
In this section, we describe two arc-routing problems: DARP, PARP; and some local search-based solution approaches 
for the PARP. All of these arc-routing models have the following common inputs: the starting and ending locations (in 
case the two locations coincide, it becomes the depot), a set of arcs (street segments), the length of each street segment, 
the length of the shortest path between an endpoint of any segment to an endpoint of any other segment, and the length 
of the shortest path to/from the ending/starting location from/to the endpoint of any street segment. 
 
2.1. Deterministic Arc-Routing Problem 
The DARP has the following description. Given the common inputs, and a set of street segments (arcs) that must be 
serviced (traversed), find the master route of minimum length, which starts at the starting location, traverses all the 
arcs, and returns to the ending location. DARP belongs to a well-known class of arc-routing problems known as the 
Mixed Rural Postman Problem (MRPP). Many solution approaches for this class of problems rely on transforming it 
into traveling salesman problems (Laporte 1997). Comprehensive surveys on MRPP, as well as the arc-routing problem 
in general, can be found in Eiselt, Gendreau, and Laporte (1995) and Assad and Golden (1995). In addition, Corberan, 
Mart, and Romero (2000) present an approximate algorithm based on the resolution of some flow and matching 
problems as well as a tabu search heuristic to solve the MRPP. Note that once we have specified the sequence order for 
visiting the arcs that must be traversed and the direction in which these arcs are traversed, then it is straightforward to 
calculate the total route length. After traversing one arc, we always use the shortest path from the end point of the just-
traversed arc to the start of the next arc to be traversed. Because these shortest path lengths and the street segment 
lengths are part of the common input for the arc-routing models, the total route length can be easily computed. For our 
computational tests, the major small package shipper that we worked with provided a sophisticated state-of-the-art 
procedure for solving the DARP. 
 
2.2. Probabilistic Arc-Routing Problem 
The PARP has the following description. Given common inputs, a set of street segments (arcs) that must be serviced 
(traversed), and the presence probabilities (probabilities of each segment requiring a visit on a particular day), find the 
master route of minimum expected length, which starts from the starting location, traverses all the arcs, and returns to 
the ending location. We now discuss the calculation of the expected length. Our expression is derived from Bertsimas, 
Jaillet, and Odoni (1990). Without loss of generality, we consider the master route t = (s, 1, 2... n, e), where s is the 
starting location and e the ending location. Given the presence probability pi (probability that street segment (arc) i 
requires a visit on a particular day), we define qi = (1 – pi ) as the probability that arc i does not require a visit. We use 
i0 and i1 to represent the entry point and the exit point of i, whose length is represented by l (i0, i1). Also, let d 

be the shortest path from street segment i to street segment j on the street network. We assume that the street 
segment presence probabilities are independent. This assumption is based on our analysis of real world industrial data 
where it is often the case that no prevalent correlations among deliveries are found. The expected length of t can be 
computed with the following expression: 
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The first component of the equation is the expected cost of using the path from the starting location to a street segment 
i, whereas the third component is that of using the path from a street segment i back to the ending location. The second 
component is the expected cost associated with using the path between street segments i and j. The fourth component is 
the expected cost of using street segment i. The last component is the cost of traveling from s to e if no arcs between 
them are realized. The expected cost of the path is based on the probability that the street segments at both ends of the 
path are realized, the probability that none of the street segments in between are realized, and the length of the path 
(i.e., the distance from the exit point of the starting segment to the entry point of the ending segment). The expected 
cost of using a street segment depends on the probability of it being realized (presence probability) and its distance 
(length from the entry point to the exit point of the street segment. Although the uncertainty in the street segment 
presence probability is an important issue, it seems to have been largely ignored by the academic literature on arc 
routing problems. In our literature search, we have come across only two papers, by Mohan, Gendreau, and Rousseau 
(2007, 2008), that discuss the issue of uncertainty in presence probability in the context of an Eulerian tour problem.  
 
2.3. Probabilistic Local Search Procedure 
For the PARP, we used a solution procedure that adapted local search approaches to our probabilistic context. Our 
solution heuristic incorporates the presence probabilities using two local search procedures, namely, 1-p-Shift and 2-p-
Opt. They act as local improvement techniques for the current solution method, which is essentially an efficient TSP 
heuristic based on the Lin-Kernighan (Helsgaun 2000) algorithm. We now describe 1-p-Shift and 2-p-Opt in the 
context of arc routing. Bertsimas and Howell (1993) provide a clear description of 1-p-Shift and 2-p-Opt, which are 
designed primarily for the PTSP problem. In the PARP, we consider street segments (arcs) instead of nodes. 
 
2.3.1. Solution Procedure 
• Input: a list of street segments (arcs) that requires service, presence probabilities for each street segment on the list, an 
initial master route stating how to traverse the list of street segments, and an iteration limit. Evaluate the expected 
length of the initial master route. Initialize the total number of iterations to zero. 
 
• Apply a probabilistic 1-Opt or 2-Opt improvement technique to the current master route. Evaluate the expected length 
of the new master route. If the expected length of the new master route is less than that of the current master route, the 
new master route becomes the current master route; 
 
• Increase the total number of iterations by one. If the total number of iterations is less than the iteration limit, go back 
to Step 1. Otherwise, Stop. Each proposed solution change of Step 1 requires that the expected cost of the new route 
must be calculated. We identified various techniques to reuse the computation of the expected value for the current 
solution in order to reduce the computation time. However, in our implementation of the probabilistic local search, we 
did not utilize such computational reduction techniques. Even with these techniques, the computational burden of these 
expected value computations is quite substantial. For the PTSP, various researchers (for example, see the survey by 
Campbell and Thomas 2007) have noted the substantial burden in computing expected value computations for large-
scale problems greater than about 100 nodes even with some proposed possible remedies.  
 
3. AN EMPIRICAL STUDY 

 
As mentioned earlier, arc-routing models are well suited to model the large number of customer locations (about 1,000 
on average for the five service routes used in our computational experiments) that can require service over a significant 
planning horizon (e.g., for a small-package local routing system over a 30-day planning horizon). Instead of having a 
very large number of customer nodes in the PTSP, we represent the customer locations as a moderate number of street 
segments to be covered. Finding the optimal solution to a PTSP with hundreds or thousands of nodes is rather 
challenging with currently available solution techniques (see Campbell and Thomas 2007). In our computational results 
for the arc-routing models, we will see that one of our suggested solution procedures can effectively handle the arc-
routing model derived from a 30-day model. In addition, it may be much easier to estimate presence probabilities for 
street segments instead of individual addresses whose individual service frequencies may be quite small, even when the 
corresponding street segment service frequency is relatively large. Another issue is the suitability of using arc- routing 
models for small-package local service operations. Suppose that an arc representing 1 to 100 Maple Street must be 
traversed. Assume that there are actually three customer locations, at 1, 38, and 70 Maple Street that must be serviced. 
The description of all the arc-routing models states that the entire arc or street segment must be traversed. In reality, the 
three customer locations on Maple Street will be covered if the sub-segment from 1–70 Maple Street is traversed. Thus, 
the arc-routing model may overestimate the mileage and route that must be used to cover the customer locations. 
However, this overestimation should not affect our analysis in determining the relative suitability of the arc-routing 
models in evaluating and identifying the preferred master route.  
 
3.1. Computational Results 
We implemented the solution procedures for the PARP described in the previous section in VC++ 6.0 and tested them 
on a computer with Pentium IV 2 GHz and 1.24 GB RAM. As discussed previously, the major small-package shipping 
firm that we worked with supplied a sophisticated state-of- the-art procedure for obtaining solutions to the DARP.  
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These solutions are also used as the initial solutions for PARP. This section discusses the results of the computational 
tests with these solution procedures and their implications concerning the utility of these two arc-routing models for 
small-package shipping firm local operations. The next subsection describes two sets of test problems— one is drawn 
from actual industrial data provided by the major small-package shipping firm, whereas the other is computer 
generated—used for evaluating the performance of these two solution techniques. The second subsection describes the 
results of the computational tests and some implications of these results. 
 
We first describe the set of test problems drawn from actual industrial data. We collected data on five local service 
routes used by a major small-package shipping firm. Each local service route encompasses both commercial and 
residential areas and required a single service provider to handle the daily work. The service routes were located in 
three different states. The major small-package shipping firm provided the street segments and their lengths, as well as 
the shortest path length between any two end points of any two street segments, and between the starting/ending 
location and the end point of any street segment. All of these lengths are derived from the underlying street network of 
the service territory associated with each route. For each local service route, we also collected daily customer demand 
data over a historical study interval consisting of 20–30 days. In other words, we solve for a daily master route based 
on 20–30 observed (historical) realizations. Table 1 gives some summary statistics for these service routes. 
 

Table: 1 (Service Routes) 

Routes Number of days in historical study interval Number of unique street segments served 
during historical study interval 

Service Route 1 30 230 

Service Route 2 30 228 

Service Route 3 20 226 
Service Route 4 30 179 
Service Route 5 30 160 

 
For each local service route, we derived a corresponding test problem, referred to as Service Routes 1 to 5. The list of 
street segments that must be traversed corresponded to the list of unique street segments serviced during the historical 
study interval. The presence probability for a street segment is the ratio of the number of days during the historical 
study interval when the street segment had at least one customer demand to the number of days in the historical study 
interval. For the number of days and the series of street segment sets corresponding to the set of street segments that 
must be traversed during each day, we used the number of days in the historical study interval and the daily set of 
streets segments that must be traversed. 
 
Next, we create the set of computer-generated test problems, referred to as Problem Sets 1 to 5. Each problem has 200 
street segments (including the starting and ending locations) and a 30-day study interval. The street segments are 
randomly placed on a 50 × 50 square grid. The coordinates for the starting and ending locations are (24.5, 0) and (25.5, 
0), respectively. Euclidean distances are used as the lengths of the street segments as well as the shortest path length 
between any two end points of any two street segments and between the starting/ending location and the end point of 
any street segment. Each street segment presence probability is randomly selected from a uniform distribution on the 
interval (0, 1). The daily realized street segment data is generated according to the presence probabilities. For example, 
if the presence probability for a street segment is 0.5, then we randomly select 15 (=30×0.5) days and create a service 
request for this segment on each of these 15 days. 
 
3.2. Empirical Evaluation of Master Routes 
We used the 5 test problems described in the previous subsection to perform various types of evaluations and 
comparisons. For each test problem, we obtained two master routes (one master route solution obtained by solving each 
of the two arc-routing models). We obtained the solutions by using the solution procedures described in the previous 
section. We performed two types of evaluations using these two arc-routing model solutions. First, we evaluated the 
two solutions using the total route-length criteria of the DARP. Note that, due to proprietary considerations, we use a 
normalized cost instead of real mileage. As expected, the DARP master route was the best in terms of the total route 
length criteria. See Table 2 for this evaluation. Next, we evaluated the two solutions using the expected length criteria 
of the PARP. Table 3 shows that the PARP solutions are better than the DARP solution using expected length criteria. 
These two evaluations show that using the standard total route length (DARP) criteria can be misleading in terms of 
evaluating master routes. 
 
The DARP solution is about 10% better in terms of the standard total length criteria than the other solution. However, 
in terms of the expected route-length (PARP) criteria, the DARP solution is generally about 2% to 5% worse than the 
PARP solutions. These results confirm that using the standard deterministic single-period criteria of total route length is 
not a good way to evaluate the master routes because it does not take into account the daily variation in customer 
demands. 
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Table: 2 (Master Route Quality Using DARP objective Function) 

Routes Actual Industrial Data Computer – Generated Data 
 DARP Solution 

(Normalized Cost) 
PARP Solution 

(Normalized Cost) 
DARP Solution 

(Normalized Cost) 
PARP Solution 

(Normalized Cost) 
Service Route 1 1.000 1.1305 15.8673 17.0117 
Service Route 2 1.000 1.1873 16.9527 20.0605 
Service Route 3 1.000 1.1651 17.3456 19.0176 
Service Route 4 1.000 1.0956 16.2723 19.0053 
Service Route 5 1.000 1.1335 18.0013 20.1252 

 
Table: 3 (Master Route Quality Using PARP objective Function) 

Routes Actual Industrial Data Computer – Generated Data 
 DARP Solution 

(Normalized Length) 
PARP Solution 

(Normalized Length) 
DARP Solution 

(Normalized Length) 
PARP Solution 

(Normalized Length) 

Service Route 1 1.000 0.9753 11.4362 10.9843 
Service Route 2 1.000 0.9621 11.7853 11.1463 
Service Route 3 1.000 0.9883 11.5546 10.8752 
Service Route 4 1.000 0.9785 11.3894 10.6723 
Service Route 5 1.000 0.9842 11.9364 11.4627 

 
4. CONCLUSIONS 
 
We have considered the local routing problem for small-package shipping where customer demands vary daily. In this 
context, node-routing problems such as the PTSP may not be appropriate set of customers served over a multiday time 
horizon may be quite large. Instead, arc-routing problems where a set of arcs instead of nodes must be traversed offer 
more tractable decision models. We discussed two types of arc-routing problems and described heuristic solution 
approaches for two of them. Our computational results with test problems based on actual small-package shipping firm 
data as well as on computer-generated data confirm that the standard deterministic single-period arc-covering model 
does not produce the most desirable types of master routes. The multiday and the probabilistic arc-routing problems 
produce better master routes by taking into account daily customer demand variation via multi-time-period or 
probabilistic models. Our computational results also show that the multiday model (with a moderate number of days) is 
much simpler to solve than the probabilistic model because it avoids the burden of expected length calculations 
required by the probabilistic model. because the In the context of small-package shipping firm planning operations, the 
deterministic arc-routing problem (DARP) is convenient to use in obtaining a master route because it requires only a 
limited set of input parameters: the starting and ending locations, a set of arcs (street segments), the length of each 
street segment, the length of the shortest path between an end point of any segment to an end point of any other 
segment, and the length of the shortest path from/to the starting/ending location to/from the end point of any street 
segment, and is a relatively simple model. However, our results indicate that noticeable (ranges from 2% to 5%) 
improvements can be obtained in master route quality by using a somewhat more complex model such as a multiday or 
probabilistic arc-routing problem that takes into account the daily variation in customer demand instead of the simpler 
deterministic and single-period arc-routing problem.  We intend to pursue this possible new approach to solving the 
PTSP and related models as an area of future research. We intend to analyze this new approach and determine the 
number of days required to be a reasonable approximation to the probabilistic model (i.e., PARP) in terms of the master 
route produced.  
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