
International Research Journal of Pure Algebra -4(2), 2014, 403-412 

 Available online through www.rjpa.info  ISSN 2248–9037 

International Research Journal of Pure Algebra-Vol.-4(2), Feb. – 2014                                                                                         403 

 
THE ELEMENT IDEAL GRAPHS  

 
N. H. Shuker & F. H. Abdulqadir* 

  
Department of mathematics, College of Computer Sciences and Mathematics-University of Mosul. 

 
(Received on: 27-01-14; Revised & Accepted on: 11-02-14) 

 
 

ABSTRACT 
Let R be a  commutative ring with identity and let x be an element of R. The Element Ideal Graph 𝛤𝛤𝑥𝑥(𝑅𝑅) is a graph 
whose vertex set is the set of nontrivial ideals of R and two vertices I and J are adjacent if and only if 𝑥𝑥 ∈ 𝐼𝐼 𝐽𝐽. In this 
paper we introduce the concept of element ideal graph we give the main properties of such graph, we also investigate 
the interplay between the graph theoretic properties of  𝛤𝛤𝑥𝑥(𝑅𝑅)  and the annihilating ideal graph AG(R). 
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INTRODUCTION 
 
Let R be a commutative ring with identity, and let Z(R) be its set of zero divisors. We associate a simple graph Γ(R) to 
R with vertices Z*(R) =Z(R)\ {(0)}, the set of all non-zero zero divisors of R, and for distinct 𝑥𝑥,𝑦𝑦 ∈Z*(R), the vertices x 
and y are adjacent if and only if xy=0. Obviously Γ(R) is empty if R is an integral domain. 

 
The zero divisor graph of a commutative ring was introduced in [4], and further studied in [1, 2, 3, 9, 10]. The 
annihilating ideal graph AG(R) is a graph with vertex set AG*(R) =AG(R)\{(0)}  such that there is an edge between 
vertices I and J if and only if  I J = (0). The idea of annihilating ideal graph was introduced by Behboodi and Rakeei in 
[5, 6]. 
 
In the present paper we define and study a new kind of graph of ideal vertices. The element Ideal Graph 𝛤𝛤𝑥𝑥(𝑅𝑅) is a 
graph whose vertex set is the set of nontrivial ideals of R and two ideal vertices I and J are adjacent if and only if   
x ∈ I J. Obviously Γx(R)  is empty graph if R is a field.  
 
1. BACKGROUND   
  
In this section we state some definitions and theorems that we need in our work.  
 
Definition 1.1 [7]: The ideals I and J of the ring R are said to be comaximal if I+J=R. 
 
Definition 1.2 [8]: 
1. The distance d(u, v) between a pair of vertices u and v of  the graph Γ is the minimum of the lengths of  the u—v 

paths of Γ.  
2. The degree of the vertex a in the graph Γ is the number of edges incident to a.  
3. The graph Г is called a plane graph if it can be drawn on a plane in such a way that any two of its edges either meet 

only at their end vertices or do not meet at all. A graph which is isomorphic to a plane graph is called a planar 
graph.  

4. A bipartite graph is one whose vertex set is partitioned into two disjoint subsets in such a way that the two end 
vertices for each edge lie in distinct partition. The complete bipartite graph with exactly two partitions of order m 
and n is denoted by Kmn. 

5. A complete subgraph Kn of a graph Γ is called a clique, and cl(Γ) is the clique number of  Γ, which is the greatest 
integer r≥ 1 such that  Kr ⊆ Γ. 
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Theorem 1.3 [8, P. 96]: (Kuratowsky Theorem) A graph Γ is planar if and only if it does not contains a graph 
homomorphic with K5 or K (3, 3). 
 
Theorem 1.4 [5, P.4]: Let R be a ring. Then the following statements are equivalent. 
(1) AG(R) is a finite graph. 
(2) R has only finitely many ideals. 
(3) Every vertex of AG(R) has finite degree. 
Moreover, AG(R) has n (n ≥ 1) vertices if and only if R has only n nonzero proper ideals. 
 

Theorem 1.5 [5, P.8]: For every ring R, the annihilating-ideal graph AG(R) is connected and diam (AG(R)) ≤ 3. 
Moreover, if AG(R) contains a cycle, then gr(AG(R)) ≤ 4.  
 
2. THE ELEMENT IDEAL GRAPH 

 
In this section we introduce the notion of element ideal graph, we give some of its basic properties and provide some 
examples. 
 
Definition 2.1: Let R be a  commutative ring with identity and let x∈R. The element ideal graph is a graph whose 
vertex set is nontrivial ideals of R, and two of its vertices I and J are adjacent if and only if 𝑥𝑥 ∈ I J. We denote the 
element ideal graph by 𝛤𝛤𝑥𝑥 (R).  
 
We shall write I—J to denote for I and J to be adjacent. 
 
Before stating our results, the following example is needed. 
 
Example 1: Let Z12 be the ring of integers modulo 12. The graph of  𝛤𝛤6(𝑧𝑧12) consists of the only edge (2) — (3). 
 
The following result is an easy consequence of definition 2.1.  
 
Lemma 2.2:  All vertices of 𝛤𝛤𝑥𝑥 (R) contain x. 
 
Example 2: Let Z be the ring of integers. Clearly the ideal vertices (2), (3), (6) and (9) of 𝛤𝛤18(Z) contain 18.   
 
The next result illustrates that the element x is a zero divisor under a condition for the vertex set of the graph 𝛤𝛤𝑥𝑥(𝑅𝑅). 
 
Theorem 2.3: If Z(R) is an ideal vertex of 𝛤𝛤𝑥𝑥(𝑅𝑅), then x is a zero divisor of  R. 
 
Proof: Since Z(R) is an ideal vertex of 𝛤𝛤𝑥𝑥(𝑅𝑅), then there exists an ideal I of R such that I— Z(R) is an edge of 
𝛤𝛤𝑥𝑥(𝑅𝑅).This means that 𝑥𝑥 ∈ 𝐼𝐼 ∙ 𝑍𝑍(𝑅𝑅), and hence  𝑥𝑥 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 𝑏𝑏𝑖𝑖  for some  𝑎𝑎𝑖𝑖 ∈ 𝐼𝐼  and 𝑏𝑏𝑖𝑖 ∈ 𝑍𝑍(𝑅𝑅). Since x≠ 0, then 𝑏𝑏𝑖𝑖 ≠ 0 
and there exists  𝑐𝑐𝑖𝑖 ∈ 𝑍𝑍∗(𝑅𝑅) such that 𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖 = 0, it follows that x𝑐𝑐𝑖𝑖 = 0. This shows that x is a zero divisor of R. 
 
Example 3: Let Z16 be the ring of integers modulo 16. Clearly 8 is a zero divisor of Z16, Z(Z16)=(2) and 8 ∈(2)(4). Then 
Z(Z16)=(2) is a vertex of  𝛤𝛤8(Z16).  
 
The converse of Theorem2.3 may not be true in general, as the following example shows. 
 
Example 4: Let Z12 be the ring of integers modulo 12. Clearly 8 is a zero divisor of Z12, while (Z12)={0,2,3,4,6,8,9,10} 
is not an ideal vertex of  𝛤𝛤8(Z12)  
 
Recall that a ring R is called reduced if R has no non-zero nilpotent element. The next result shows that all vertices of 
the graph ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) are looped under a sufficient condition for R. 
 
Proposition 2.4: If R is a reduced ring, then all ideal vertices of ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) are looped. 
 
Proof: Suppose that ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) has no loop at an ideal vertex I. Then I I= (0). This implies that  𝑎𝑎2 = 0 for every𝑎𝑎 ∈ 𝐼𝐼. 
Since R is a reduced ring, then a=0 for every 𝑎𝑎 ∈ 𝐼𝐼. This contradicts the fact that I is a nontrivial ideal. Therefore all 
ideal vertices of ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) are looped. 
 
Example 5: Let Z be the ring of integers. Obviously Z is a reduced ring and (a) (a) ≠ (0) for every nontrivial ideal (a) 
of Z, therefore ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (Z) has a loop at every its vertex (a). 
 
If R is not reduced ring, then  ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) may have a non-looped vertex. The following example illustrates it. 
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Example 6: Let Z12 be the ring of integers modulo 12. Clearly there is no x such that x∈ (6) (6). This means that     
(6) — (6) is not an edge in 𝛤𝛤𝑥𝑥(𝑍𝑍12) for every x∈Z12\ {0}. This yields that ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (𝑍𝑍12) has a non-looped vertex (6). 
  
We next turn to give the following result. 
 
Proposition 2.5: If I and J are adjacent ideal vertices in 𝛤𝛤𝑥𝑥 (R), and K is an ideal containing J, then K is an ideal vertex 
of 𝛤𝛤𝑥𝑥 (R) and I is adjacent to K in 𝛤𝛤𝑥𝑥 (R). 
 
Proof: The proof follows directly from the definition of 𝛤𝛤𝑥𝑥 (R). 
 
Example 7:  Let Z the ring of integers.                            (2)                            (3)        

                                                            (9)                                                               (6)   
Clearly (2) is adjacent to (9) in 𝛤𝛤18(Z), and (9) ⊆ (3). So (2) is also adjacent to (9) in 𝛤𝛤18(Z).  
 
The following Corollaries are immediate from Proposition 2.5. 
 
Corollary 2.6: If I— J is an edge of  𝛤𝛤𝑥𝑥(𝑅𝑅) with deg(J) = n, then any chain of ideal vertices of 𝛤𝛤𝑥𝑥(𝑅𝑅) which  starts with 
I, has length at most n. 
 
Proof: Let I=I1⊆ I2 ⊆…⊆ Im be a chain of vertices of 𝛤𝛤𝑥𝑥(𝑅𝑅). Then by Proposition2.5, J is adjacent to vertices I1 , I2 ,…, 
Im. This means that the ideal vertex J has degree at least m, but deg(J)=n, so m≤n. Therefore any chain of vertices of 
𝛤𝛤𝑥𝑥(𝑅𝑅) which starts with I, has length at most n. 
 
Example 8: Let Z be the ring of integers.                       (2)                                  (3)                       (8) 

                                      
                             
                                                                                       
                                                                 (12)                       (6)                                    (4)   

 
Clearly (2) is adjacent to (6) in 𝛤𝛤24(Z), deg((2))=2 and the length of (6) ⊆ (3) is not greater than two.  
 
Corollary 2.7:  For two distinct ideal vertices I and J of 𝛤𝛤𝑥𝑥 (R), if I⊆J then deg (I)≤deg(J). 
 
Proof:  The prove is trivial. 
 
Example 9: Let Z be the ring of integers.                 (2)                           (3)        

                                   
 
                                                       (6)                                                             (4)   
                                                                                    𝛤𝛤12(Z)     

Clearly (6) ⊆(3) and deg ((6)) =1<2=deg ((3)). 
    
The next result demonstrates that the vertex set of the element ideal graph is always contain a maximal ideal of R. 
 
Theorem 2.8: If  𝛤𝛤𝑥𝑥 (R) is non-empty, then its vertex set contains a maximal ideal of  R, moreover if  I is an ideal vertex 
of  𝛤𝛤𝑥𝑥(R) which is not maximal ideal, then |𝛤𝛤𝑥𝑥(R) |>1. 
 
Proof: Let I be an ideal vertex of 𝛤𝛤𝑥𝑥 (R). Then there exists an ideal J such that I— J  is an edge in  𝛤𝛤𝑥𝑥(R).  If I is a 
maximal ideal, the theorem holds. Now suppose that I is not a maximal ideal of R .Then I contains in a maximal ideal 
of R say M. Then there exists an ideal J of R such that I— J  is an edge of  𝛤𝛤𝑥𝑥(R). By Proposition 2.5, J is adjacent to M 
in 𝛤𝛤𝑥𝑥(R). This means that M is an ideal vertex of  𝛤𝛤𝑥𝑥(R).  Clearly 𝛤𝛤𝑥𝑥(R) contains a path  I— J— M (The vertex J may be 
equal to one of I and M). Thus |𝛤𝛤𝑥𝑥(R) |>1. 
 
Example 10:  Consider the graph 𝛤𝛤18 (Z).                   (2)               (3)        

                                               
                                                               (9)                                   (6)                                                       

 
Clearly the vertex set of 𝛤𝛤18(Z) contains maximal ideals (2) and (3), the ideal vertex (9) is not maximal ideal and   
|𝛤𝛤𝑥𝑥(R) | = 4>1. 
 
The next result demonstrates that any two comaximal nontrivial ideals of R are adjacent in 𝛤𝛤𝑥𝑥 (R). 
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Proposition 2.9:  Any two comaximal nontrivial ideals of R are adjacent in 𝛤𝛤𝑥𝑥 (R). 
 
Proof: Let I and J are comaximal ideals of R. This means that I+J=R. Then there exist a∈I and b ∈J such that a + b =1.   
This implies that x=x(a+b)=xa+xb. From Lemma2.2, x ∈I∩J. This implies that  xa, xb∈ I J . It follows that x∈ I J. This 
means that I and J are adjacent ideal vertices in 𝛤𝛤𝑥𝑥 (R). 
 
Example 11: Let Z be the ring of integers. Clearly Z= (2) + (3), the maximal ideal (2) is a vertex of 𝛤𝛤8(Z) and   
|𝛤𝛤8(Z)| = 2>1. 
 
The next result illustrates the adjacency of maximal ideals of R in the graph Γx(R).   
 
Proposition 2.10: Let Γx(R) be non-empty graph. Then every two distinct maximal ideals of R, are adjacent in Γx(R). 
 
Proof: Let M and N be two distinct maximal ideals of R. Clearly the ideal M+N contains both of M and N. Then either 
(M =M+N or N =M+N) or R=M+N. If M=M+N, then M⊂N, which is impossible because M is a maximal ideal. 
Therefore M≠M+N. By the same way we can show that N≠M+N. Thus R=M+N.This means that M and N are           
comaximal ideals.  By Proposition2.9, M and N are adjacent ideal vertices in Γx(R). 
 
Example 12: Let Z be the ring of integers Z. Clearly (2) and (3) are maximal ideals of Z which are adjacent in Γ12(Z). 

 
We next turn to give the following result. 

 
Theorem 2.11: If 𝛤𝛤𝑥𝑥(𝑅𝑅) is a planar graph, then R has at most four maximal ideals.  
 
Proof: Suppose that R has five maximal ideals say M1, M2, M3, M4, M5. By Proposition2.10, any two of M1, M2, M3, 
M4, M5 are adjacent ideal vertices in 𝛤𝛤𝑥𝑥(𝑅𝑅). This means that 𝛤𝛤𝑥𝑥(𝑅𝑅) contains the graph K5. Then by Theorem1.3, the 
graph 𝛤𝛤𝑥𝑥(𝑅𝑅) is not planar.This is contradiction that 𝛤𝛤𝑥𝑥(𝑅𝑅) is a planar graph. Therefore R has at most four maximal 
ideals.  
 
Example 13: Let Z be the ring of integers. 
                       (2)                                                (8) 
   
                      (4)                                 

 
Clearly 𝛤𝛤16 (𝑍𝑍)  is a planar graph and the only maximal ideal of Z16 is (8).  
 
The next result shows that the principal ideal generated by x is not a vertex of  𝛤𝛤𝑥𝑥 (R), if R is an integral domain. 
 
Proposition 2.12: If R is an integral domain, then (x) is not an ideal vertex of 𝛤𝛤𝑥𝑥 (R). 
 
Proof: Suppose that (x) is an ideal vertex of 𝛤𝛤𝑥𝑥 (R). Then there exists a nontrivial ideal I of R such that 𝑥𝑥 ∈(x)∙I. It 
follows that x=∑ 𝑟𝑟𝑖𝑖𝑥𝑥𝑎𝑎𝑖𝑖𝑖𝑖 =x∑ 𝑟𝑟𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖   for some 𝑟𝑟𝑖𝑖 ∈R and 𝑎𝑎𝑖𝑖 ∈I. Since R is an integral domain, then the cancellation law 
gives us 1=∑ 𝑟𝑟𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 .This implies that 1∈I. This   contradicts the fact that I is a nontrivial ideal of R. Therefore (x) is not 
an ideal vertex of 𝛤𝛤𝑥𝑥 (R). 
 
Example 14: Let Z be the ring of integers. Obviously, there is no ideal (x) of Z such that 6∈ (6) (x), therefore (6) is not 
a vertex of 𝛤𝛤6(Z). 
   
The ideal (x) may be an ideal vertex of  𝛤𝛤𝑥𝑥 (R) if  R is not an integral domain. The next example illustrates this. 
 
Example 15: Let Z12 be the ring of integers modulo 12. Obviously Z12 is not integral domain and 6 ∈(6) (3). Hence (6) 
is an ideal vertex of 𝛤𝛤6(Z12). 
 
We next give the following easy result. 
 
Proposition 2.13: If x is an invertible element of R, then 𝛤𝛤𝑥𝑥 (R)= ∅. 
 
Proof: The prove is trivial. 
 

Example 16: Let Z8 be the ring of integers modulo 8. Since 3 3=1, then 3 is an invertible element of Z8. On the other 
hand there are no ideals I and J of Z8 such that 3 ∈ 𝐼𝐼 ∙ 𝐽𝐽. This means that 𝛤𝛤3(R) = ∅. 
 



N. H. Shuker & F. H. Abdulqadir*  / The Element Ideal Graphs /IRJPA- 4(2), Feb.-2014. 

© 2014, RJPA. All Rights Reserved                                                                                                                                                     407  

 
The converse of Propostion2.13 may not be true in general. We show this by the following example. 
 
Example 17: Let Z be the ring of integers. Clearly there are no ideals I and J of Z such that 2∈ 𝐼𝐼 ∙ 𝐽𝐽. Then 𝛤𝛤2(R)= ∅, 
while 2 is not invertible element in Z. 
   
The next result illustrates the inclusive relation between two element ideal graphs of the same ring. 
 
Proposition 2.14: If a is a factor of x, then 𝛤𝛤𝑎𝑎 (R) is a subgraph of 𝛤𝛤𝑥𝑥 (R). 
 
Proof: Let I— J be an edge in 𝛤𝛤𝑎𝑎(R).This means that ∈ 𝐼𝐼 𝐽𝐽. Since a is a factor of  x , then there exists 𝑏𝑏 ∈R  such that 
x=ab. Since I J is an ideal of R, then x=ab∈ 𝐼𝐼 𝐽𝐽. This implies that I— J is an edge in 𝛤𝛤𝑥𝑥(R). Thus  𝛤𝛤𝑎𝑎 (R) is a subgraph of  
𝛤𝛤𝑥𝑥 (R).  
 
Example 18: Let Z be the ring of integers. Obviously 4 is a factor of 8 and 𝛤𝛤4(Z) is a subgraph of  𝛤𝛤8(Z). 
 
The next result illustrates that the element ideal graph of two isomorphic rings R and S are also isomorphic.    
 
Theorem 2.15: Let R and S be two rings such that f: R→S is a ring isomorphism. Then for any x∈ 𝑅𝑅 the element ideal 
graphs 𝛤𝛤𝑥𝑥 (R) and 𝛤𝛤𝑓𝑓(𝑥𝑥)(S) are isomorphic.  
 
Proof: Let V(𝛤𝛤𝑥𝑥 (R)) and V(𝛤𝛤𝑓𝑓(𝑥𝑥)(S)) be the vertex set of 𝛤𝛤𝑥𝑥 (R) and  𝛤𝛤𝑓𝑓(𝑥𝑥)(R)  respectively. We define the restricted 
function g:V(𝛤𝛤𝑥𝑥 (R))→ V(𝛤𝛤𝑓𝑓(𝑥𝑥)(S)) of  f  by g(I)=f(I) for every vertex I of  𝛤𝛤𝑥𝑥 (R). Since f is a bijective function, then g is 
also a bijective function. Suppose that I—J be an edge in 𝛤𝛤𝑥𝑥 (R).Then x∈I J. This implies that f(x)∈ 𝑓𝑓(I J). Since f is a 
ring homomorphism , then f(IJ)=f(I)f(J)=g(I)g(J). This yields f(x)∈ g(I)g(J). This means that g(I) —g(J) is an edge in  
𝛤𝛤𝑓𝑓(𝑥𝑥)(S).  Hence g preserves the adjacency property. Thus 𝛤𝛤𝑥𝑥 (R) and 𝛤𝛤𝑓𝑓(𝑥𝑥)(S) are isomorphic graphs.    
 
Example 19: Let Z be the ring of  integers. It is easy to show that the function f:Z→Z ×{0}  defined by f(x)=(x,0)  is a 
ring isomorphism , where (a, b)+(c, d)= (a+c, b+d) and (a, b)∙(c,d)=(ac+ad+bc,bd). Now we draw the graphs 𝛤𝛤12(Z) and 
𝛤𝛤(12,0)(Z×{0})  as follows:   
                      (2)                        (3)                                      (2) ×{0}                             (3) ×{0}        

                                   
  
     (6)                                                    (4)                   (6) ×{0}                                          (4) ×{0}   
                               𝛤𝛤12(Z)                                                                    𝛤𝛤(12,0)(Z×{0})   
 
Obviously the graphs 𝛤𝛤12(Z) and  𝛤𝛤(12,0)(Z×{0})  are isomorphic.  
 
Observe that the element ideal graphs of two rings are isomorphic, while the rings are not isomorphic. We illustrate this 
by the following example. 
 
Example 20: Let Z6 and Z8 be the rings of integers modulo 6 an 8 respectively. Clearly the graphs 𝛤𝛤4(Z6) and 𝛤𝛤4(Z8) 
consist of the only loop (2) —(2). Then 𝛤𝛤4(Z6) and 𝛤𝛤4(Z8) are isomorphic, while Z6 and Z8 are not isomorphic. 
 
3. CONNECTEDNESS AND COMPLETENESS OF ELEMENT IDEAL GRAPH   
   
In this section we investigate the connectedness, completeness, planarity, bipartite and clique number of the element 
ideal graph. 
 
The next result illustrates the connectedness and the diameter of the element ideal graph. 
 
Theorem 3.1: The element ideal graph is connected and its diameter is less than or equal to 4.  
 
Proof: Let I and J be any two distinct ideal vertices of the element ideal graph 𝛤𝛤𝑥𝑥 (R).Then there exist ideal vertices K 
and L of 𝛤𝛤𝑥𝑥 (R) which are adjacent to I and J respectively. Consider the ideal I+J. Now, we have two cases for I+J. 
 
Case (1): If I and J are comaximal ideals, then by Proposition2.9, I and J are adjacent ideal vertices in 𝛤𝛤𝑥𝑥 (R).  
 
Case (2): Let I+J≠R. In this case I+J is a nontrivial ideal. Since   I and J are contained in I + J , then by Proposition2.5, 
K and L are adjacent to I+J. Thus I — K — I+J — L—J is a path from I to J in 𝛤𝛤𝑥𝑥 (R) (The ideal I+J may be equal to 
one of the ideals I , J , K and L). From both cases we have shown that there is a path between every two distinct  
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vertices of 𝛤𝛤𝑥𝑥 (R). Hence 𝛤𝛤𝑥𝑥 (R) is connected. Obviously, from above cases we see that the diameter of 𝛤𝛤𝑥𝑥 (R) less than or 
equal to 4. 
 
Example 21:  Let Z be the ring of integers.                    (2)                             (3)        

                                    
 
                                                             (6)                                                    (4)   

Clearly 𝛤𝛤12(Z) is a connected graph and its diameter is less than or equal to 4. 
 
The next result shows that there is no element ideal star graph of order greater than two.  
 
Theorem 3.2: If G is a star graph of order greater than 2, then G cannot be realized as an element ideal graph. 
 
Proof: Suppose that G=𝛤𝛤𝑥𝑥 (R) for some ring R and some x∈R. Let I be the center of G. Since G  is a star graph of order 
greater than 2, then there exist two distinct vertices J, I and K≠ 𝐼𝐼  adjacent to I. Sine  I⊆ I + K, then by Proposition 2.5, 
I+K adjacent to J in G. But J is an end vertex of G, so I+K=I. It follows that K⊆ I. This implies that x∈IK⊆ I2. This 
contradicts the fact that G has no any loop. Therefore G cannot be realized as an element ideal graph.  
 
The element ideal graph could be a star graph if its order equal to 2. We illustrate it by the following example. 

  
Example 22: Let Z be the ring of integers. Obviously the graph Γ15(Z) is a star which consists of the only edge 
(3)—(5).   
 
The next result considers the completeness of the element ideal graph 𝛤𝛤𝑥𝑥 (R) under certain conditions. 
 
Proposition 3.3: If x is an idempotent element of R, then 𝛤𝛤𝑥𝑥 (R) is a complete graph. 
 
Proof: Let I and J be any two distinct ideal vertices of 𝛤𝛤𝑥𝑥 (R). By Lemma 2.2, x∈ 𝐼𝐼 ∩ 𝐽𝐽. It follows that x=xx ∈ 𝐼𝐼 ∙ 𝐽𝐽 . 
This means that I and J are adjacent ideal vertices in 𝛤𝛤𝑥𝑥 (R). Therefore 𝛤𝛤𝑥𝑥  (R) is a complete graph. 
 
Example 23: Let Z12 be the ring of integers modulo 12.             (4)                     (2)  
 
Obviously 4 is an idempotent element of Z12 and 𝛤𝛤4(Z12) is a complete graph.     

 
The next example shows that the converse of Proposition3.3 may not be true in general. 
 
Example 24: Let Z be the ring of integers. Obviously the graph Γ6(Z) is complete which consists of the only edge 
(3) — (2), while 6 is not an idempotent element.   
 
Corollary 3.4: If x=0, then 𝛤𝛤𝑥𝑥 (R) is a complete graph and all nontrivial ideals of R are its vertices.  
 
Proof: The prove is trivial. 
 
Example 25:  Let Z18 be the ring of integers modulo 18.           
                                                                                                                         (2) 
                                                                                            (3)                                                             (6)                                              
                                                                                                                         (9) 
 
Clearly the graph 𝛤𝛤0(Z18) is a complete graph  and all nontrivial ideals of  R are its vertices.   
 
The converse of Corollary3.4 may not be true in general. We illustrate it by the following example. 
 
Example 26: Let Z be the ring of integers.                (2)                    (4)  
 
Clearly the graph 𝛤𝛤8(Z) is a complete graph, while 8≠0.  
 
The following result gives a sufficient condition for the converse of Corollary3.4 to be true. 
 
Proposition 3.5: Let R be a ring of zero Jacobson radical. If Γx(R) is a complete graph whose vertices are all nontrivial 
ideals of R, then x=0.   
 
Proof: Since Γx(R) be a complete graph and all nontrivial ideals of R are its vertices. By Lemma 2.2, all nontrivial 
ideals of R contain x. This implies that x∈ J(R). Since R has zero Jacobson radical, then x=0.      
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Example 27: Let Z6 be the ring of integers modulo 6. Obviously the ideals of Z6 are (2) and (3) and the jacobson of R 
is J(R) =⋂{𝑀𝑀:𝑀𝑀 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑀𝑀} = (2)∩(3)=(0). The graph 𝛤𝛤0(Z6) has the only verteces (2) and (3). Thus 
𝛤𝛤0(Z6) is a complete graph. 
 
The next result demonstrates the completeness of ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) under a condition on R. 
 
Proposition 3.6: If R is an integral domain, then ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) is a complete graph. 
 
Proof: Let I and J be any two ideal vertices of ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R). Since R is an integral domain, then IJ≠ (0).This means that 
IJ contains a non-zero element say x. So I— J is an edge in ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R).Thus ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) is a complete graph. 
 
Example 28: Let Z be the ring of integers. Obviously Z is an integral domain and ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (Z)   is a complete graph.  
   
The next example illustrates that the graph ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) may not be a complete graph in general. 
 
Example 29: Let Z12 be the ring of integers modulo 12. Since 8∈(2)(4) and 6∈ (2)(3), then (3) and (4) are two ideal 
vertices of ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (Z12).On the other hand (3)(4)=(0).This means that (3) and (4) are not adjacent in ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (Z12). 
Hence ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) is not a complete graph. 
 
The next result limits the girth of the element ideal graph under the conditions on an its edge.  
 
Proposition 3.7:  Let x be a non-zero element of R. If Γx(R) contains an edge I—J such that: 
1. I and J are not comaximal ideals of R. 
2. Any one of ideals I and J does not contains the other. 
 
Then the girth of Γx(R) is equal to three.  
 
Proof: Let I—J be an edge of Γx(R) such that I and J are not comaximal with I⊈J and J⊈I. Clearly I+J≠R. Since 
I.J⊆I+J, then I+J≠ (0). By Proposition 2.5, I+J is adjacent to both I and J. Since niether  I⊆J nor J⊆I ,then neither  
I+J=I  nor  I+J=J. This means that I, J and I+J are distinct vertices of Γx(R). Hence I+J—I—J—I+J is a cycle in Γx(R). 
Thus the girth of Γx(R) is equal to three. 
 
Example 30: Let Z24 be the ring of integers modulo 12. 
                                                                                       (2)                               (3)                                (8)      

                                  
                              
                                                   (6)                               (12)                                   (4)   
 

Since (3) + (4) ≠Z, then (3) and (4) are not comaximal ideals of  Z, which are adjacent ideal vertices in 𝛤𝛤24(Z) and the 
girth of 𝛤𝛤24(Z) is equal to 3. 
      
The next result determines the lower bounds for the clique number of the graph  ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R).   
 
Theorem 3.8: Let a∈R\{0}, and let n>6 be the smallest positive integer such that 𝑎𝑎𝑛𝑛 = 0. Then  

cl(⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R))=�
𝑛𝑛
2
− 1 𝑛𝑛 ∈ 𝑍𝑍𝑒𝑒
𝑛𝑛−1

2
𝑛𝑛 ∈ 𝑍𝑍𝑜𝑜

� , where Ze and Zo are the set of even and odd integers respectively. 

 
Proof: Since n is a smallest integer such that  𝑎𝑎𝑛𝑛 = 0 , then the principal ideal (𝑎𝑎i) is non zero ideal for every 
i=1,2,…,n-1. On the other hand 𝑎𝑎𝑖𝑖  is a zero divisor of  R for every i=1,2,…,n-1, so (𝑎𝑎i)≠ 𝑅𝑅. Therefore (𝑎𝑎i)  is a 
nontrivial ideal of R. Now if n is an even number , then (𝑎𝑎1) , (𝑎𝑎2),…, (𝑎𝑎

𝑛𝑛
2−1) are adjacent  ideal vertices in ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R). 

This means that the graph ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) contains a complete subgraph of vertices (𝑎𝑎1),(𝑎𝑎2),…, (𝑎𝑎
𝑛𝑛
2−1). Thus the clique 

number of ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) is greater than or equal to 𝑛𝑛
2
− 1.  If n is an odd number, then (𝑎𝑎1),(𝑎𝑎2),…, (𝑎𝑎

𝑛𝑛−1
2 ) are adjacent 

ideal vertices in ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R). This means that the graph ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) contains a complete subgraph of ideal vertices 
(𝑎𝑎1),(𝑎𝑎2),…, (𝑎𝑎

𝑛𝑛−1
2 ). Thus the clique number of  ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R)  is greater than or equal to  𝑛𝑛−1

2
 . 

 
Example 31: Let Z128 be the ring of integers modulo 128. Clearly 2 is an element of Z128 and n=7 is the smallest odd 
integer in which 27=0. Since any two of  (21),(2 2) and (23) are adjacent ideal vertices in ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (𝑍𝑍128 ), then the graph 
⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (𝑍𝑍128 ) contains K3 . Thus cl(⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (Z128)) ≥

7−1
2

=3.  
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The next result considers the relationship between two of the element ideal graph.  
 
Theorem 3.9: Let 𝛤𝛤𝑥𝑥 (R) and 𝛤𝛤𝑦𝑦 (R) be nonempty graphs. Then  𝛤𝛤𝑥𝑥(R) + 𝛤𝛤𝑦𝑦 (R) is a subgraph of 𝛤𝛤𝑥𝑥𝑥𝑥 (R). 
 
Proof: Let I— J be an edge in 𝛤𝛤𝑥𝑥(R) + 𝛤𝛤𝑦𝑦 (R).We have the following cases:  
 
Case (1): Both I and J are ideal vertices of 𝛤𝛤𝑥𝑥(R).This means that either 𝑥𝑥 ∈ I J. Since I J is an ideal of R, then x𝑦𝑦 ∈ I J . 
Thus I— J is an edge in 𝛤𝛤𝑥𝑥𝑥𝑥 (R). 
 
Case (2): Both I and J are ideal vertices of 𝛤𝛤𝑦𝑦 (R). By the same way of case (1) we obtain that I— J  is an edge in𝛤𝛤𝑥𝑥𝑥𝑥 (R). 
 
Case (3): The ideal I is an ideal vertex of 𝛤𝛤𝑥𝑥 (R) or 𝛤𝛤𝑦𝑦 (R) and J is an ideal vertex of the other graph. Suppose that I and J 
are ideal vertices of 𝛤𝛤𝑥𝑥 (R) and 𝛤𝛤𝑦𝑦 (R) respectively. It follows from Lemma2.2 that x∈ I  and 𝑦𝑦 ∈  J, and hence x𝑦𝑦 ∈ I J. 
This means that I— J  is an edge in  𝛤𝛤𝑥𝑥𝑥𝑥 (R). 
 
From each case we obtain that  𝛤𝛤𝑥𝑥 (R)+𝛤𝛤𝑦𝑦 (R)⊆𝛤𝛤𝑥𝑥𝑥𝑥 (R). 
 
The next example illustrates that 𝛤𝛤𝑥𝑥𝑥𝑥 (R) may not be a subgraph of 𝛤𝛤𝑥𝑥 (R) + 𝛤𝛤𝑦𝑦 (R).  
 
Example 32:  Let Z be the ring of integers. It is easy to show that 𝛤𝛤6(Z)+𝛤𝛤4(Z) is a subgraph of  𝛤𝛤24(Z).  
                                                                                                                                     (2)                                    (8)    
     (2)              (3)         (2)          (2)               (3)                                                                             (3)       
                                                                                                                  (12) 
            𝛤𝛤6(Z)                𝛤𝛤4(Z)           𝛤𝛤6(Z)+𝛤𝛤4(Z)                                                    (6)                                     (4) 
                                                                                                                                         𝛤𝛤24(Z) 
Clearly (4) —(6) is an edge in 𝛤𝛤24(Z) , while (4) —(6) is not an edge in  𝛤𝛤6(Z)+𝛤𝛤4(Z). 
 
The next result illustrates that the graph ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) is not a complete bipartite. 
 
Theorem 3.10: If all nontrivial ideals of R are vertices of ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R), then  ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) ≠ 𝐾𝐾𝑚𝑚𝑚𝑚  for every integers       
m, n>1. 
 
Proof: Suppose that  ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) = 𝐾𝐾𝑚𝑚𝑚𝑚  for some integers m, n>1, with the partite A and B. Clearly, all vertices of A 
are adjacent in AG(R) and all vertices of B are adjacent in AG(R). So AG(R) consists of two subgraph and there is no 
edge between any two vertices I in the first graph and J in the second graph. This contradicts Theorem1.5, because 
AG(R) is connected graph. Therefore ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R) ≠ 𝐾𝐾𝑚𝑚𝑚𝑚   for every integers m, n>1. 
 
Example 33: Let Z12 be the ring of integers modulo 12.  
                                                  (2)                              (3)         
       
 
                                      (4)                                                      (6) 
 Clearly ⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (𝑍𝑍12) is not a complete bipartite graph. 
 
4. THE GRAPHS 𝜞𝜞𝒙𝒙(R) and AG(R) 
   
In this section we consider the relationship between Γx(R) and AG(R).  

 
We start this section with the following result. 
 
Theorem4.1: Let 𝛤𝛤𝑥𝑥 (R) and 𝐴𝐴𝐴𝐴(𝑅𝑅) are non-empty graphs. Then E(𝛤𝛤𝑥𝑥 (R))∩ 𝐸𝐸(𝐴𝐴𝐴𝐴(𝑅𝑅)) ≠ ∅  if and only if x=0. 
 
Proof: Let x=0. Since 𝐴𝐴𝐴𝐴(𝑅𝑅) is a non-empty graph, there exist two ideals of R which are adjacent in  𝐴𝐴𝐴𝐴(𝑅𝑅). Since 
0∈ 𝐼𝐼 𝐽𝐽, then I and J are adjacent in 𝛤𝛤0(R). Hence  𝐸𝐸(𝛤𝛤𝑥𝑥 (R))∩ 𝐸𝐸(𝐴𝐴𝐴𝐴(𝑅𝑅)) ≠ ∅. 
 
Conversely, if  E(𝛤𝛤𝑥𝑥 (R))∩ 𝐸𝐸(𝐴𝐴𝐴𝐴(𝑅𝑅)) ≠ ∅, then there exists two distinct ideals  I and J of R such that I— J is an edge of  
E(𝛤𝛤𝑥𝑥 (R))∩ 𝐸𝐸(𝐴𝐴𝐴𝐴(𝑅𝑅)).This means that 𝑥𝑥 ∈ 𝐼𝐼 𝐽𝐽 and I J=(0). This gives us x=0.  
 
The following result illustrates the relation between Γ(R) and 𝛤𝛤𝑥𝑥 (R). 
 
Corollary 4.2: Let |𝛤𝛤𝑥𝑥(R)|>1.  If Γ(R) is a complete graph, then  𝛤𝛤𝑥𝑥 (R) is also a complete graph. 
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Proof: Since |𝛤𝛤𝑥𝑥(R)|>1, the graph 𝛤𝛤𝑥𝑥 (R) contains an edge say I— J. Since Γ(R) is a complete graph, then the graph 
AG(R) is also a complete graph. By Theorem1.4, the vertex set of AG(R) and the set of nonzero proper ideals of R 
have the same cardinality. So I and J are also ideal vertices of AG(R). It follows from the completeness of AG(R) that 
I— J  is an edge of AG(R). This means that E(𝛤𝛤𝑥𝑥 (R))∩ 𝐸𝐸(𝐴𝐴𝐴𝐴(𝑅𝑅)) ≠ ∅. Then by Theorem 4.1, x=0. It follows from 
Corollary 3.4 that 𝛤𝛤𝑥𝑥 (R) is a complete graph. 
 
Example 34: Let Z9 be the ring of integers modulo 9. Clearly Γ(Z9) is a complete graph and 𝛤𝛤𝑥𝑥 (Z9) is a trivial graph 
which consists of the loop (3) — (3). 
 
The following result illustrates that the element ideal graph 𝛤𝛤0(R) consists of the edge in the annihilating ideal graph 
and the element ideal graph 𝛤𝛤𝑥𝑥 (R) for every non zero element x. 
 
Proposition 4.3:  For any ring R, 𝛤𝛤0(R) =𝐴𝐴𝐴𝐴(𝑅𝑅) ∪ (⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R)). 
 
Proof: By Corollary3.4, 𝛤𝛤0(R) is a complete graph whose vertices are all nontrivial ideals of R. Then𝐴𝐴𝐴𝐴(𝑅𝑅) ∪
(⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R)) ⊆ 𝛤𝛤0(R). Now suppose that I— J is an edge of 𝛤𝛤0(R). Clearly either I J=(0) or I J≠(0). This means that 
either  I— J is an edge in  𝐴𝐴𝐴𝐴(𝑅𝑅)  or I— J is an edge in 𝛤𝛤𝑥𝑥 (R) for some 𝑥𝑥 ≠ 0. This implies that I— J is an edge in  
𝐴𝐴𝐴𝐴(𝑅𝑅) ∪ (⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R)). Hence  𝛤𝛤0(R)⊆ 𝐴𝐴𝐴𝐴(𝑅𝑅) ∪ (⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R)). Thus 𝛤𝛤0(R) =𝐴𝐴𝐴𝐴(𝑅𝑅) ∪ (⋃ 𝛤𝛤𝑥𝑥𝑥𝑥≠0 (R)). 
 
Example 35: Let Z6 be the ring of integers modulo 6. It is easy to show that  𝛤𝛤1(Z6)=𝛤𝛤2(Z6)= 𝛤𝛤5(Z6)= ∅, the graph  
𝛤𝛤3(Z6) consists of (3) —(3) ,  the graph  𝛤𝛤4(Z6) consists of (2) —(2)  and  the graph AG(Z6) consists of (2) —(3).  
 
Now 𝐴𝐴𝐴𝐴(𝑍𝑍6) ∪ (⋃ 𝛤𝛤𝑥𝑥5

𝑥𝑥=1 (Z6)) = 𝐴𝐴𝐴𝐴(Z6) ∪ 𝛤𝛤3(Z6) ∪ 𝛤𝛤4(Z6) consists of the edge (2) —(3) and two loops (2) —(2) and 
(3) —(3), which represents the graph 𝛤𝛤0(Z6).   
 
The next result illustrates that x is a zero divisor of R if the vertex set of 𝛤𝛤𝑥𝑥 (R) intersects the vertex set of AG(R). 
 
Theorem 4.4: Let R be a non-domain. If the vertex sets of  𝛤𝛤𝑥𝑥 (R) and  AG(R) have a common vertex, then x∈ 𝑍𝑍(𝑅𝑅).  
 
Proof: Suppose that the vertex set of 𝛤𝛤𝑥𝑥 (R) and the vertex set of AG(R) have a common vertex say I. Now the ideal 
vertex I of AG(R) gives us I⊆Z(R).  From Lemma2.2 , the ideal vertex I of  𝛤𝛤𝑥𝑥 (R) gives us   x∈ 𝐼𝐼. Thus  x∈Z(R).                                                                                                                  
 
Example 36: Let Z12 be the ring of integers modulo 12. Clearly (2) (6) = (0) and 8∈(2)(4). Then (2) is an ideal vertex 
of both AG(R) and 𝛤𝛤12(𝑍𝑍12) , in the same time 2 is a zero divisor of  Z12.    
 
Corollary 4.5: Let R be a non-domain.If 𝛤𝛤𝑥𝑥 (R) has a vertex which is a nilpotent ideal of R, then x is a zero divisor of R. 
 
Proof: Let I be a nilpotent ideal vertex of 𝛤𝛤𝑥𝑥 (R). Sine I is a nilpotent ideal, then there exists a smallest integer m>1 such 
that I Im-1=Im=(0). This means that I is an ideal vertex of AG(R).Since I is an ideal vertex of 𝛤𝛤𝑥𝑥 (R), then Theorem4.4  
gives us x is a zero divisor of  R. 
 
Example 37: Let Z8 be the ring of integers modulo 8. Clearly (2) is a nilpotent ideal of Z8 and 2 is a zero divisor of Z8. 
 
The cardinality of the element ideal graph may be less than the cardinality of the set of nonzero proper ideals of R. We 
illustrate it by the following example. 
 
Example 38: Let Z8 be the ring of integers modulo 8. Since the vertex set of Г𝑥𝑥(𝑍𝑍8) is {(2)}, then the cardinality of  
Г𝑥𝑥(𝑍𝑍8) is equal to 1, and The cardinality of the set of nonzero proper ideals {(2), (4)} of Z8 is equal to 2. So the 
cardinality of Г𝑥𝑥(𝑍𝑍8) is less than the cardinality of the set of nonzero proper ideals of Z8. 
 
The next result demonstrates the relation between the cardinality of the element ideal graph and the annihilating ideal 
graph. 
 
Proposition 4.6: If R is a non-domain, then the cardinality of Г𝑥𝑥(𝑅𝑅) is less than   or equal to the cardinality of AG(R) 
for every 𝑥𝑥 ∈ 𝑅𝑅.  
 
Proof: From Theorem1.4, the set of vertices of AG(R) and the set of nonzero proper ideals of R have the same 
cardinality. Thus the cardinality of  Г𝑥𝑥(𝑅𝑅) is less than or equal to the cardinality of AG(R) for every  𝑥𝑥 ∈ 𝑅𝑅.   
 
Example 39: Let Z8 be the ring of integers modulo 8. It is easy to show that the cardinality of  AG(Z8) is equal to 2 and 
the cardinality of Г4(𝑍𝑍8) is equal to 1.  
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If R is an integral domain, then the cardinality of AG(R) is zero. Hence the cardinality of  Г𝑥𝑥(𝑅𝑅) is greater than or 
equal to the cardinality of AG(R) for every 𝑥𝑥 ∈ 𝑅𝑅.We illustrate it in the following example. 
 
Example 40: Let Z be the ring of integers. Clearly AG(Z) = ∅ and the graph Г12 (𝑍𝑍) has four vertices. So the 
cardinality of  Г𝑥𝑥(𝑍𝑍) is greater than   or equal to the cardinality of AG(Z).      
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