SOME RESULTS ON THE GROUP INVERSE OF BLOCK MATRIX OVER RIGHT ORE DOMAINS

Hanyu Zhang*
Group of Mathematical, Jidong second middle school, Jidong 158200, PR China.

(Received on: 29-01-14; Revised \& Accepted on: 07-02-14)

Abstract

Suppose R be a right Ore domain with identity 1, and $R^{m \times n}$ denote the set of all $m \times n$ matrices over R. In this paper, we give the existences and the representations of the group inverse for block matrix $\left(\begin{array}{cc}A C & B \\ C & 0\end{array}\right)$ and $\left(\begin{array}{cc}B A & B \\ C & 0\end{array}\right)$ under the special condition over right Ore domains. The paper's results generalize some relative results of Wang and Fan (International Research Journal of Pure Algebra. 3 (12):347-351, 2013)

Keyword: group inverse; block matrix; right Ore domain.

1. INTRODUCTION

A square matrix G is said to be group inverse of A, if G satisfies $A G A=A, G A G=G$ and $A G=G A$. It is well known that if G exists, it is unique. We then write $G=A^{\#}$. When $A^{\#}$ exists, we denote $A^{\pi}=I-A A^{\#}$.

The Drazin inverses and group inverses of 2×2 block matrices have applications in many areas, especially in singular differential and difference equations and finite Markov chains (see [4-8]). It is important to study them in a larger ring. In 2001, Cao [11] studied the problem over a division ring. Zhang and Bu [1] made a research over a right Ore domain in 2012. The purpose of this paper extends the results of group inverse over skew fields given in [10] to right Ore domains.

A ring is called a right Ore domain if it possesses no zero divisors and every two elements of the ring have a right common multiple. A left Ore domain is defined similarly. Every right(left) Ore domain R can be embedded in the skew field(denoted by K_{R}) of quotients of itself. For any matrix A over R, the rank of A (denoted by $r(A)$) is defined as the rank of A over K_{R} (see [1]-[3]).

Let R be a right Ore domain with identity $1, R^{m \times n}$ be the set of all $m \times n$ matrices over R. The rank of a matrix $A \in R^{m \times n}$ (denoted by $r(A)$) is defined as the rank of A over K_{R}, i.e., the maximum order of all invertible subblocks of A over K_{R}. A matrix A is called regular if there exists a matrix X such that $A X A=A$, then X is called a $\{1\}$ inverse or regular inverse of A. In this case, denote the set of all $\{1\}$-inverses of A by $A\{1\}$. Let $A^{(1)}$ be any $\{1\}$ inverse of A. Let $A \in R^{m \times n}$, denote the range and the row range of a matrix A by $R(A)$ and $R_{r}(A)$, where $R(A)=\left\{A x \mid x \in R^{n \times 1}\right\}$ and $R_{r}(A)=\left\{y A \mid y \in R^{1 \times m}\right\}$.

2. SOME LEMMAS

In this section, we give some lemmas which play important role throughout this paper.

Corresponding author: Hanyu Zhang
Group of Mathematical, Jidong second middle school, Jidong 158200, PR China.
E-mail: zhanghanyu423@126.com

Lemmas: $1^{[9]}$ Let $A \in R^{n \times n}$, the followings are equivalent:
(i) $A^{\#}$ exists;
(ii) $A^{2} X=A$ for some $X \in R^{n \times n}$. In this case, $A^{\#}=A X^{2}$;
(iii) $Y A^{2}=A$ for some $Y \in R^{n \times n}$. In this case, $A^{\#}=Y^{2} A$;
(iv) $R(A)=R\left(A^{2}\right)$;
(v) $R_{r}(A)=R_{r}\left(A^{2}\right)$.

Lemmas: 2 Let $A, B \in R^{n \times n}$. If $A B$ and $B A$ are all regular, $r(A)=r(B)=r(A B)=r(B A)$, then $(A B)^{\#}$ and $(B A)^{\#}$ exist.

Proof: If $r(A)=r(B)=r(A B)=r(B A)$, then there exist matrices X, Y, Z and W over K_{R} such that $A=A B X=Y B A$ and $B=B A Z=W A B$. Thus $A B(A B)^{(1)} A=A B X=A \quad, A(B A)^{(1)} B A=Y B A=A$, $B A(B A)^{(1)} B=B A Z=B, \quad B(A B)^{(1)} A B=W A B=B . \quad$ Thus $\quad R(A)=R(A B), \quad R(B)=R(B A)$, $R_{r}(A)=R_{r}(B A), R_{r}(B)=R_{r}(A B)$,
Therefore $R(A B)=A R(B)=A R(B A)=A B R(A)=A B R(A B)=R(A B A B)$,

$$
R_{r}(B A)=R_{r}(B) A=R_{r}(A B) A=R_{r}(A) B A=R_{r}(B A) B A=R_{r}(B A B A)
$$

By Lemma 1 we conclude that $(A B)^{\#}$ and $(B A)^{\#}$ both exist.

Lemmas: 3 Let $A \in R^{n \times m}, B \in R^{m \times n},(A B)^{\#}$ and $(B A)^{\#}$ exist. then
(i) $(A B)^{\#}=A\left[(B A)^{\#}\right]^{2} B$;
(ii) $(A B)^{\#} A=A(B A)^{\#}$;
(iii) $B(A B)^{\#} A=B A(B A)^{\#}$;
(iv) $A B(A B)^{\#} A=A$;
(v) $A(B A)^{\#} B A=A$;
(vi) $B A(B A)^{\#} B=B$.

Proof: From Lemma 2.3 of [9], they are obvious.

3. MAIN RESULTS

Theorem: 1 Let $M=\left(\begin{array}{cc}A C & B \\ C & 0\end{array}\right) \in R^{2 n \times 2 n}$, and $r(B) \geq r(C)$, then
(1) $M^{\#}$ exists if and only if $r(B)=r(C)=r(B C)=r(C B)$ and $B C, C B$ are both regular.
(2) If $M^{\#}$ exists, then $M^{\#}=\left(\begin{array}{ll}M_{1} & M_{2} \\ M_{3} & M_{4}\end{array}\right)$, where
$M_{1}=(B C)^{\pi} A C(B C)^{\#}$,
$M_{2}=(B C)^{\#} B-(B C)^{\pi}\left[A C(B C)^{\#}\right]^{2} B$,
$M_{3}=C(B C)^{\#}$,
$M_{4}=-C(B C)^{\#} A C(B C)^{\#} B$.
Proof: (1): "Only if" part.
If M has a group inverse, by Lemma 1 , there exist matrices X and Y over R such that $M=M^{2} X=Y M^{2}$. Since

$$
M^{2}=\left(\begin{array}{cc}
I & A \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
B C & 0 \\
C A C & C B
\end{array}\right)
$$

$$
M=\left(\begin{array}{cc}
I & A \\
0 & I
\end{array}\right)\left(\begin{array}{ll}
0 & B \\
C & 0
\end{array}\right)
$$

Let

$$
\begin{aligned}
& X=\left(\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right), \\
& Y=\left(\begin{array}{ll}
I & A \\
0 & I
\end{array}\right)\left(\begin{array}{ll}
Y_{1} & Y_{2} \\
Y_{3} & Y_{4}
\end{array}\right)\left(\begin{array}{cc}
I & -A \\
0 & I
\end{array}\right),
\end{aligned}
$$

Then

$$
\left(\begin{array}{cc}
B C & 0 \\
C A C & C B
\end{array}\right)\left(\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right)=\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
Y_{1} & Y_{2} \\
Y_{3} & Y_{4}
\end{array}\right)\left(\begin{array}{cc}
B C & 0 \\
C A C & C B
\end{array}\right)=\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right),
$$

i.e.,
$B C X_{1}=0$,
$B C X_{2}=B$,
$C A C X_{1}+C B X_{3}=C$,
$C A C X_{2}+C B X_{4}=0$,
$Y_{1} B C+Y_{2} C A C=B$,
$Y_{2} C B=B$,
$Y_{3} B C+Y_{4} C A C=C$,
$Y_{4} C B=0$.
Note that $M^{\#}$ exists, it is easy to know B is regular. Using (2) and (6), we have $B C=B B^{(1)} B C=B C X_{2} B^{(1)} B C$ and $C B=C B B^{(1)} B=C B B^{(1)} Y_{2} C B$, i.e., both $B C$ and $C B$ are regular.

From (2) and (6) we know $R(B)=R(B C), R_{r}(B)=R_{r}(C B)$ Therefore, $r(B)=r(B C)=r(C B)$, and $r(C) \geq r(B C)=r(B) \geq r(C)$, i.e., $r(B)=r(C)$.

The "if" part.
By Lemma 2 we know that $(A B)^{\#}$ and $(B A)^{\#}$ both exist. Let $X_{1}=(B C)^{\pi} B, X_{2}=(B C)^{\#} B, X_{3}=(C B)^{\#} C$, $X_{4}=-(C B)^{\#} C A C(B C)^{\#} B$. That implies $M=M^{2} X$ have a solution, so by Lemma $1 M^{\#}$ exists.
(2): By Lemma 1, the expression of $M^{\#}$ can be got from $M^{\#}=M X^{2}$. Using Lemma 3, next we can compute that

$$
\begin{aligned}
M^{\#} & =\left(\begin{array}{cc}
A C & B \\
C & 0
\end{array}\right)\left(\begin{array}{cc}
0 & (B C)^{\#} B \\
(C B)^{\#} C & -(C B)^{\#} C A C(B C)^{\#} B
\end{array}\right) X \\
& =\left(\begin{array}{cc}
B(C B)^{\#} C & A C(B C)^{\#} B-B(C B)^{\#} C A C(B C)^{\#} B \\
0 & C(B C)^{\#} B
\end{array}\right) \times\left(\begin{array}{cc}
0 & (B C)^{\#} B \\
(C B)^{\#} C & -(C B)^{\#} C A C(B C)^{\#} B
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{ll}
M_{1} & M_{2} \\
M_{3} & M_{4}
\end{array}\right) .
$$

Corollary: 1 Let $M=\left(\begin{array}{ll}A & B \\ A & 0\end{array}\right) \in R^{2 n \times 2 n}$, and $r(B) \geq r(A)$, then
(1) $M^{\#}$ exists if and only if $r(B)=r(A)=r(B A)=r(A B)$ and $B A, A B$ are both regular.
(2) If $M^{\#}$ exists, then $M^{\#}=\left(\begin{array}{ll}M_{1} & M_{2} \\ M_{3} & M_{4}\end{array}\right)$,
where
$M_{1}=(B A)^{\pi} A(B A)^{\#}$,
$M_{2}=(B A)^{\#} B-(B A)^{\pi}\left[A(B A)^{\#}\right]^{2} B$,
$M_{3}=A(B A)^{\#}$,
$M_{4}=-A(B A)^{\#} A(B A)^{\#} B$.
Proof: The results is a special case of Theorem 1, let $A=I$ in Theorem, the conclusion is obvious. Similarly, we can get the following results.

Theorem: 2 Let $M=\left(\begin{array}{cc}B A & B \\ C & 0\end{array}\right) \in R^{2 n \times 2 n}$, and $r(B) \leq r(C)$, then
(1) $M^{\#}$ exists if and only if $r(B)=r(C)=r(B C)=r(C B)$ and $B C, C B$ are both regular.
(2) If $M^{\#}$ exists, then $M^{\#}=\left(\begin{array}{ll}M_{1} & M_{2} \\ M_{3} & M_{4}\end{array}\right)$,
where
$M_{1}=B(C B)^{\#} A-B(C B)^{\#} A B(C B)^{\#} B$,
$M_{2}=B(C B)^{\#}$,
$M_{3}=-C B(C B)^{\#} A B(C B)^{\#} A+(C B)^{\#} B-C B\left[(C B)^{\#} A B\right]^{2}(C B)^{\#} B$,
$M_{4}=-C B(C B)^{\#} A B(C B)^{\#}$.
Corollary: 2 Let $M=\left(\begin{array}{cc}A & A \\ B & 0\end{array}\right) \in R^{2 n \times 2 n}$, and $r(B) \leq r(A)$, then
(1) $M^{\#}$ exists if and only if $r(B)=r(A)=r(B A)=r(A B)$ and $B A, A B$ are both regular.
(2) If $M^{\#}$ exists, then $M^{\#}=\left(\begin{array}{ll}M_{1} & M_{2} \\ M_{3} & M_{4}\end{array}\right)$,
where
$M_{1}=A(B A)^{\#}-A(B A)^{\#} A(B A)^{\#} A$,
$M_{2}=A(B A)^{\#}$,
$M_{3}=-B A(B A)^{\#} A(B A)^{\#}+(B A)^{\#} A-B A\left[(B A)^{\#} A\right]^{2}(B A)^{\#} A$,
$M_{4}=-B A(B A)^{\#} A(B A)^{\#}$.
Proof: Let $A=I$ in Theorem 2.

REFERENCES

[1] K. Zhang, C. Bu, Group inverses of matrices over right Ore domains, Appl. Math. Comput. 2012, 218: 6942-6953.
[2] P.M. Cohn, Free Rings and Their Relations, London Mathematical Society Monographs, second ed., vol. 9, Academic Press Inc., London, 1985.
[3] L. Huang, Geometry of Matrices Over Ring, Science Press, Beijing, 2006.
[4] S. L. Campbell, C.D. Meyer, Generalized Inverses of Linear Transformations, Dover, Newyork, 1991.
[5] A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, second ed., Spinger-Verlag, Newyork, 2003.
[6] S.L. Campbell, The Drazin inverse and systems of second order linear differential equations, Linear Multilinear Algebra, 1983, 14: 195-198.
[7] C. D. Meyer, The role of the group generalized inverse in the theory of finite Markov chains, SIAM Rev. 1975, 17(3): 443-464.
[8] C. Bu, K. Zhang, Representations of the Drazin inverse on solution of a class singular differential equations, Linear Multilinear Algebra 2011, 59: 863-877.
[9] Y. Ge, H. Zhang, Y. Sheng, C. Cao, Group inverse for two classes of 2×2 anti-triangular block matrices over right Ore domains, J. Appl. Math. Comput, 2013, 42: 183-191.
[10] J. Wang, X. Fan, Some results on the group inverse of block matrix over skew fields, International Research Journal of Pure Algebra, 2013, 3(12): 347-351.
[11] C. Cao, Some results of group inverses for partitioned matrices over skew fields, Sci. Heilongjiang Univ. 2001, 18: 5-7 (in chinese).

Source of Support: Nil, Conflict of interest: None Declared

