Research Journal of Pure Algebra -1(4), July - 2011, Page: 88-92
 Available online through www.r.jpa.info ISSN 2248-9037
 ON STRONG NŐRLUND SUMMABILITY OF ORTHOGONAL EXAPANSION

Sandeep Kumar Tiwari ${ }^{1}$ and Dinesh Kumar Kachhara* ${ }^{2}$
${ }^{1}$ School of Studies in Mathematics, Vikram University, Ujjain (M.P.) India
*E-mail: dkkachhara@rediffmail.com

(Received on: 25-06-11; Accepted on: 13-07-11)

ABSTRACT

In this paper, we shall prove general theorems which contain two theorems on the Strong Nörlund summability of the orthogonal expansion.

In 1965 Sunouchi G. [9] obtained on the strong summability of orthogonal Series .and in 1967 Sunouchi G.,[10] prove the Approximation of Fourier Series and orthogonal Series

In this paper, we obtain the comparable result of [9] and [10] with general Strong Nörlund summability of orthogonal expansion.

Key Word: Strong Nörlund summability, orthogonal Series.

INTRODUCTION:

Let $\left\{\phi_{n}(x)\right\}$ be an orthonormal system of L^{2}-integrable function defined in $[a, b]$ we consider the orthonormal series

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} \phi_{n}(x) \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n}^{2}<\infty \tag{2}
\end{equation*}
$$

We say the series (1) is $\left(N, p_{n}\right)$-summable to $s(x)$, if
$t_{n}(x)=\frac{1}{p_{n}} \sum_{k=0}^{\infty}{ }^{\prime} p_{n-k} s_{k}(x) \rightarrow s(x)$ as $n \rightarrow \infty$.
Where $\left\{p_{n}\right\}$ is a sequence of numbers with $p_{0}>0$ and $p_{n} \geq 0$ for all n.
It is well known that the method $\left(\bar{N}, p_{n}\right)$ is regular if and only if,

$$
\lim _{n \rightarrow \infty} \frac{p_{n}}{p_{n}}=0 .
$$

Hence, it follows that the method $\left(\bar{N}, p_{n}\right)$ is regular when $\left\{p_{n}\right\} \in M^{\alpha}$
Let

$$
S_{n}=\frac{1}{p_{n}} \sum_{k=0}^{n} \frac{p_{k}}{k+1} .
$$

 i.e.

$$
\sum_{n=1}^{\infty}\left|S_{n}-S_{n-1}\right|<\infty .
$$

Strong approximation of Cesáro means of order $\alpha>0$ is obtained by Sunouchi [9],[10], Leindier [3], [4], [5] and Kantawala [1], [2] have discussed the strong approximation of Nörlund and Euler means of orthogonal series. Sunouchi [9] prove with the strong (C, α)-summability of orthogonal series for two following theorems:

Theorem A: if the orthogonal series (1) and (2) is $(C, 1)$-summable to $f(x)$ a.e. in $[a, b]$ for any $\alpha>0$ and >0.
Theorem B: if

$$
\sum c_{m}^{2}(\log \log m)^{2}<\infty
$$

Then, there exists a square integrable function $f(x)$ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1}\left|s_{n_{v}}(x)-f(x)\right|^{r}=0
$$

for any $\alpha>0$ and $r>0$ a.e. in $[a, b]$ and for increasing sequence $\left\{n_{v}\right\}$.
In this paper we shall prove a general theorem on the Strong Nörlund summability of the orthogonal expansion.
Theorem: 1 If the series

$$
\sum_{n=1}^{\infty}\left\{\sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{n}}{R_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{1 / 2}
$$

is converges, then the orthogonal expansion

$$
\sum_{n=0}^{\infty} a_{\mathrm{n}} \Phi_{\mathrm{n}}(\mathrm{x})
$$

is summable $\left|n . p_{n}, q_{n}\right|$ almost everywhere.
Proof: Let $t_{n}^{p, q}(x)$ be the $\mathrm{n}^{\text {th }}\left(\bar{N}, p_{n}, q_{n}\right)$ mean of series $\sum_{n=0}^{\infty} a_{n} \phi_{n}(x)$. Then we have

$$
\begin{aligned}
t_{n}^{p, q}(x) & =\frac{1}{R_{n}} \sum_{k=0}^{n} p_{n-k} \mathrm{q}_{\mathrm{k}} \mathrm{~s}_{\mathrm{k}(x)} \\
& =\frac{1}{R_{n}} \sum_{k=0}^{n} p_{\mathrm{n}-\mathrm{k}} \mathrm{q}_{\mathrm{k}} \sum_{j=0}^{k} a_{j} \phi_{j}(x) \\
& =\frac{1}{R_{n}} \sum_{j=0}^{n} a_{j} \phi_{j}(x) \sum_{k=j}^{n} p_{n-\mathrm{k}} \mathrm{q}_{\mathrm{k}} \\
& =\frac{1}{R_{n}} \sum_{j=0}^{n} R_{n}^{j} a_{j} \phi_{j}(x)
\end{aligned}
$$

where $\mathrm{s}_{\mathrm{n}}(\mathrm{x})=\sum_{k=0}^{n} a_{\mathrm{k}} \varphi_{\mathrm{k}}(\mathrm{x})$.

Thus we obtain

$$
\begin{aligned}
t_{n}^{p, q}(x)-t_{n-1}^{p, q}(x) & =\frac{1}{\mathrm{R}_{\mathrm{n}}} \sum_{j=0}^{n} R_{n}^{j} a_{j} \phi_{j}(x)-\frac{1}{\mathrm{R}_{\mathrm{n}-1}} \sum_{j=0}^{n-1} R_{n-1}^{j} a_{j} \varphi_{j}(\mathrm{x}) \\
& =\frac{1}{\mathrm{R}_{\mathrm{n}}} \sum_{j=1}^{n} R_{n}^{j} a_{j} \phi_{j}(x)-\frac{1}{\mathrm{R}_{\mathrm{n}-1}} \sum_{j=1}^{n-1} R_{n-1}^{j} a_{j} \varphi_{j}(\mathrm{x}) \\
& =\frac{1}{\mathrm{R}_{\mathrm{n}}} \sum_{j=1}^{n} R_{n}^{j} a_{j} \phi_{j}(x)-\frac{1}{\mathrm{R}_{\mathrm{n}-1}} \sum_{j=1}^{n} R_{n-1}^{j} a_{j} \varphi_{j}(\mathrm{x}) \\
& =\sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right) a_{j} \phi_{j}(x) .
\end{aligned}
$$

Using the Schwarz's inequality and the orthogononality, we obtain

$$
\begin{aligned}
\int_{a}^{b}\left|\Delta t_{n}^{p, q}(x)\right| \mathrm{dx} & \leq(\mathrm{b}-\mathrm{a})^{1 / 2}\left\{\int_{a}^{b}\left|\Delta t_{n}^{p, q}(x)\right|^{2} \mathrm{dx}\right\}^{1 / 2} \\
& =(\mathrm{b}-\mathrm{a})^{1 / 2}\left\{\sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{1 / 2}
\end{aligned}
$$

and therefore

$$
\int_{a}^{b}\left|\Delta t_{n}^{p, q}(x)\right| \mathrm{dx}=(\mathrm{b}-\mathrm{a})^{1 / 2}\left\{\sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{1 / 2}
$$

which is convergent by the assumption and from the Beppo-Leni Lemma we complete the proof.
We need the following corollaries from our theorem.
Corollary 1: [6, 7] If the series

$$
\sum_{n=1}^{\infty} \frac{P_{n}}{p_{n} P_{n-1}}\left\{\sum_{j=1}^{n} P_{n-j}^{2}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-j}}{p_{n}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{1 / 2}
$$

Converges, then the orthogonal series

$$
\sum_{n=0}^{\infty} a_{n} \phi_{n}(x)
$$

is summable $\left(\bar{N}, p_{n}\right)$ almost everywhere.
Proof: The proof follows from our theorem and the fact that

$$
\begin{aligned}
\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}} & =\frac{P_{n-j}}{P_{n}}-\frac{P_{n-1-j}}{P_{n-1}} \\
& =\frac{1}{P_{n} P_{n-1}}\left(P_{n-1} P_{n-j}-P_{n} P_{n-1-j}\right) \\
& =\frac{1}{P_{n} P_{n-1}}\left\{\left(P_{n}-p_{n}\right) P_{n-j}-P_{n}\left(P_{n-j}-p_{n-j}\right)\right\} \\
& =\frac{1}{P_{n} P_{n-1}}\left(P_{n} P_{n-j}-p_{n} P_{n-j}-P_{n} P_{n-j}+p_{n-j} P_{n}\right)
\end{aligned}
$$

$$
=\frac{P_{n}}{P_{n} P_{n-1}}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-j}}{p_{n-j}}\right) p_{n-j} \text { for all } p_{n}=1
$$

Corollary2: [8] If the series

$$
\sum_{n=1}^{\infty} \frac{q_{n}}{Q_{n} Q_{n-1}}\left\{\sum_{j=1}^{n} Q_{j-1}^{2} a_{j}^{2}\right\}^{1 / 2}
$$

Converges, the the orthogonal series

$$
\sum_{n=0}^{n} a_{n} \phi_{n}(x)
$$

Summable $\left(\bar{N}, p_{n}\right)$ almost everywhere.
Proof: The proof follows from theorem 1 and the fact that

$$
\begin{aligned}
\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}} & =\frac{Q_{n}-Q_{j-1}}{Q_{n}}-\frac{Q_{n-1}-Q_{j-1}}{Q_{n-1}} \\
& =\mathrm{Q}_{\mathrm{j}-1}\left(\frac{1}{Q_{n}}-\frac{1}{Q_{n-1}}\right) \\
& =-\frac{q_{n} Q_{j-1}}{Q_{n} Q_{n-1}} \text { for all } p_{n}=1
\end{aligned}
$$

or the application of these corollaries, see Okuyama $[6,7,8]$
If we put

$$
\omega(j)=\frac{1}{j} \sum_{n=j}^{\infty} n^{2}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}
$$

Then we have the following theorem from theorem 1.
Theorem 2.Let $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(n) / n\}$ is a non-increasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n \Omega(n)}$ converges. Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be non-negative. If the series $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \Omega(n) \omega(n)$ converges, then the orthogonal series $\sum_{n=0}^{\infty} a_{n} \varphi(x)$ is summable $\left|\bar{N}, p_{n}, q_{n}\right|$ almost everywhere, where $\omega(n)$ is define by (2).

Proof: We have by Schwarz inequality

$$
\begin{aligned}
\sum_{n=1}^{\infty} \int_{a}^{b}\left|\Delta t_{n}^{p, q}(x)\right| & \leq \mathrm{A} \sum_{n=1}^{\infty}\left\{\sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{1 / 2} \\
& =\mathrm{A} \sum_{n=1}^{\infty} \frac{1}{n^{1 / 2} \Omega(n)^{1 / 2}}\left\{n \Omega(n) \sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{1 / 2} \\
& \leq \mathrm{A}\left\{\sum_{n=1}^{\infty} \frac{1}{n \Omega(n)}\right\}^{1 / 2}\left\{\sum_{n=1}^{\infty} n \Omega(n) \sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \mathrm{A}\left\{\sum_{j=1}^{\infty}\left|a_{j}\right|^{2}\right\} \sum_{n=j}^{\infty} n \Omega(n)\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2} \\
& \leq \mathrm{A}\left\{\sum_{j=1}^{\infty}\left|a_{j}\right|^{2} \frac{\Omega(j)}{j} \sum_{n=j}^{\infty} n^{2}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\right\}^{1 / 2} \\
& =\mathrm{A}\left\{\sum_{j=1}^{\infty}\left|a_{j}\right|^{2} \Omega(j) \omega(j)\right\}^{1 / 2}<\infty
\end{aligned}
$$

This completes the proof of theorem 2 from the same reason of the proof of theorem 1.

REFERENCES:

[1] Kantawala, P.S., Agrawal, S.R. and Patel, C.M., on Strong Approximation Nörlund and Eular Means of Orthogonal Seies ,Indian J. Math.,33(2)(1991),99-118.
[2] Kantawala, P.S., Agrawal, S.R.,On Strong Approximation of Eular Means of Orthogonal seies, Indian J. Math., 37(1),(1995),17-26.
[3] Leindler, L. On the Strong Summability of Orthogonal Series, Acta Sci Math., 23,(1996), 217-228.
[4] Leindler, L., On the ?Strong Summability of Orthogonal Series, Acta.,Sci. math, (Szeged)28,(1967), 3376-338.
[5] Leindler,L., On the Strong Approximation of Orthogonal Series, Acta, Sci.Math. 32,919710, 41-50.
[6] Okuyama Y., On the absolute Nörlund summability of orthogonal series, Proc. Japan Acad. 54 (1978), 113-118.
[7] kuyama Y., Absolute summability of Fourier series and orthogonal series, Lecture Notes in Math. No. 1067, (1983), Springer-Verlag.
[8] Okuyama Y. and Tsuchikura T., on the absolute Riesz summability of orthogonal series, Analysis Math. 7 (1981), 199-208.
[9] Sunouchi G., on the strong Summability of Orthogonal Series Acta. Sci Math., 27,(1965)71-76.
[10] Sunouchi G., Strong Approximation of Fourier Series and Orthogonal Series, Ind. J., Math.9, (1967), 237-246.

