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ABSTRACT

Let G be a finite group and let X9 denotes the conjugacy class of an element X of G . In this paper we classify all

finite simple groups G that union of any four distinct non-trivial conjugacy classes of it together with 1 is a subgroup
of G.
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1. INTRODUCTION

Throughout this paper, G denotes a finite group. The influence of arithmetic structure of conjugacy classes of G, like

conjugacy class sizes, the number of conjugacy classes or the number of conjugcy class sizes, on the structure of G is
an extensively studied question in group theory. Many authors have studied the influence of some other kind of
behaviours of conjugacy classes on the structure of the group. For more details, reader can see the excellent survey

article by Camina and Camina [1]. Gumber and Kalra in [4] classified all finite groups G with the property that the
union of any | distinct non-trivial conjugacy classes of G together with 1 is a subgroup of G, for 1<i<3. An

element X of G is called a real element if there exists another element ¢ in G such that x9=x", Agroup G is

called a rational group if every element X of G is conjugate to X", where M is a natural number coprime to | X | LA
group G is a EPO-group if every non-identity element of G has prime order. By Re(G) we denote the set of all real

elements of G and by ﬂ(G) we denote the set of all the primes dividing the order of G . The purpose of this paper is

to classify all finite simple groups G that union of any four distinct non-trivial conjugacy classes of it together with 1
is a subgroup of G .

Theorem 1.1. A finite simple group G satisfies in the property that union of any four distinct non-trivial conjugacy
classes of it together with 1 is a subgroup of G , if and only if G is isomorphic to Z. or A;.

2. PROOF OF THEOREM 1.1
We first introduce some lemmas and theorems that will be used in the proof of Theorem 1.1.

Lemma 2.1. [3, Lemma 2.4] Let G be a group.
(i) If X isareal element of G and | X® | is odd, then X* =1.

(ii) If X is areal element of G, then every power of X is a real element of G .
(iii) The identity is the unique real element of G if and only if | G | is odd.

(iv) If NG and |%| is odd, then Re(G) = Re(N).

*Corresponding author: Mehdi Rezaei*
Buein Zahra Technical University, Buein Zahra, Qazvin, 3451745346, Iran.
E-mail: m_rezaei@bzte.ac.ir

International Research Journal of Pure Algebra-Vol.-4(2), Feb. — 2014 390


http://www.rjpa.info/�

Mehdi Rezaei* / On The Structure Of Finite Simple Groups With A Given Property/ IRJPA- 4(2), Feb.-2014.

Proposition 2.2. [5, Proposition 21] Let G be a rational group with abelian Sylow 2-subgroup G, . Then:
(i) G, is elementary abelian
(ii) G splits over G with G, as complement.

(iii) G’ is a 3-group.
Corollary 2.3. [6, Corollary 1] If G is rational, then Z (G) is an elementary abelian 2-group.

Theorem 2.4. [2, Theorem 1.12] Let G be a finite EPO-group. Then
(i) G isnilpotent if and only if G isa P -group of exponent p .

(i) G is solvable and nonnilpotent if and only if G is a Frobenius group with kernel P € Syl (G),with P a p-
group of exponent P and complement Q € Syl (G), with [Q|= (.
(iii) G is nonsolvable if and only if G = A .

Now we start the proof of Theorem 1.1.

Let G be a finite abelian simple group. Observe that if union of any four distinct non-trivial conjugacy classes of G
together with 1 is a subgroup of it, then 5 is a divisor of | G | and so | G |= 5K for some positive integer K . It is easy

to see that if G = Z, then union of any four distinct non-trivial conjugacy classes of G together with 1 is a subgroup

of it. Conversely suppose that G is a finite abelian simple group that union of any four distinct non-trivial conjugacy
classes of G together with 1 is a subgroup of it. Let X,y e€G—{1} be two distinct elements. Then

{1,%,x%,x%,y} is a subgroup of G such that Yy = X*. If ze G —{1,x,x%, X%}, then {1,x,x*,x*,2} is a
subgroup of G suchthat z = x* = Y. Thus G is a cyclic group of order 5.

Now let G be a finite non-abelian simple group. It is easily seen that if G is isomorphic to A, then union of any

four distinct non-trivial conjugacy classes of A together with 1 is a subgroup of it. For the converse part, we proceed
in a number of steps.

Step 1. | G | is divisible by exactly 3 distinct primes.

Suppose |G | is divisible by at least four distinct primes. We show that order of every element of G is a prime. Let
X, € G be of order ;I and let X,,X;,X, € G be of orders p,, P, and P, respectively, where P;, P,, P3, P,
are distinct primes and | >2. Then H =1UxZ UxXS U XS UXS s a subgroup of G containing X, but not X, .
This is a contradiction and thus every element of G is of prime order. Let X € G be arbitrary and let | X|= P, a
prime. Let Y,,Y,,Y; € G be of orders (,,q, and 0 respectively, where 0, # Q, # 0, are primes different from
p.Let K=1U x® U ylG U yf U yf. Then X" is conjugate to X whenever M is relatively prime to P . Thus
G s a rational group with elementary abelian Sylow 2-subgroup and therefore G is a {2,3}-group by Proposition
2.2, this is a contradiction to | 7(G)[>4. So |G| is divisible by at most 3 distinct primes and since G is a non-
abelian simple group, therefore | G | is divisible by exactly 3 distinct primes.

step2. |Z(G)|=1.

Assume | Z(G)|>1 and let P be the largest prime dividing | Z(G)|. Suppose P>5. Let X € Z(G) be of order
P, YyeG be of order (|, where ( is a prime different from P and let H =1U X% U (x?)® U (x®)® U y°.
Then H is a subgroup of G containing X and Y but not containing XYy, a contradiction. Thus P =2 or 3. If
p=2,then Z(G) isa2-group. Let S be a Sylow 2-subgroup of G containing Z(G). Let Z € Z(G) be of order
2, w2zeS and t,ueG be of orders P and (, respectively, where P,( € 7(G) are odd primes. Then

K =1uz® Uw® Uu® Ut® isasubgroup of G not containing zuU . Thus S = Z(G) is the unique Sylow 2-
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subgroup of G . Therefore lZ?G)l is odd and by Lemma 2.1, Re(G) = Re(Z(G)). Let L=1uz® uu® ut® U (uz)®.

Now U™ eL is of order g, therefore uleu®. Thus U is a real element of G —Z(G), a contradiction to
Re(G) = Re(Z(G)). Now let p=3, then Z(G) is a 3-group or a {2,3}-group. Let Z(G) is a 3-group and
2 € Z(G) be of order 3. Since |G | is divisible by three distinct primes, therefore there are y,,y, € G of orders
0,,q, respectively, where @, # (|, are primes different from 3. Let K =1u 2° U (22)G v ylG ) yZG. Then K is
a subgroup of G containing z and Y, but not containing Zzy, , a contradiction. Now let Z(G) is a {2,3}-group and
let z,,Z, € Z(G) be of orders 2 and 3 respectively. Also let u € G be of order P, where P is a prime different
from 2 and 3. Let H =10 (2,)® U(z,)® U (22)® Uu®. Then H is a subgroup of G containing z, and U but

not containing z,U, a contradiction. Hence | Z(G) |=1.

Step 3. Order of every element of G is prime, i.e. G is a EPO-group.
Let X € G be an arbitrary element of order m. If G contains an element of composite order, then we can choose

three non-conjugate elements X,, X, and X, of orders different from m. Let H =1y x® U XlG U X2G U Xf . Then

X" is conjugate to X whenever r is relatively prime to m. Thus G is a rational group. By Corollary 2.3, If G is a
rational group, then Z(G) is an elementary abelian 2-group, a contradiction. Therefore order of every element of G
is prime, i.e. G is a EPO-group.

Now since G is a EPO-group and | G | is divisible by three primes, therefore by Theorem 2.4, G is not nilpotent and
G isisomorphicto Ay .

Now the proof of Theorem 1.1 is complete.
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