COMMUTATIVITY OF ALTERNATIVE PERIODIC RINGS WITH $(x y)^{n+1}-(y x)^{n+1} \in Z(R)$

Y. S. Kalyan Chakravarthy* \& K. Suvarna
Department of Mathematics, S. K. University, Ananthapuramu - 515001, India.

(Received on: 30-12-13; Revised \& Accepted on: 16-01-14)

Abstract

Let R be an Alternative periodic ring. In this paper, we show that an n-torsion free alternative ring R with identity satisfying $x^{n} y^{n}=y^{n} x^{n}$ and $(x y)^{n+1}-y^{n+1} x^{n+1} \in Z(R)$ is commutative. We also prove that if R is an n-torsion free alternative periodic ring suchthat $(x y)^{n+1}-(y x)^{n+1} \in Z(R), n$ is a fixed positive integer and $N(R)$ is commutative, then R is commutative.

AMS Mathematics subject classification: 17.
Key words: Alternative rings, Periodic rings, Center.

INTRODUCTION

Abu-Khuzam, Bell and Yaqub [2] proved that an n-torsion free ring R with identity such that, for all x, y in $R, x^{n} y^{n}=$ $y^{n} x^{n}$ and $(x y)^{n+1}-x^{n+1} y^{n+1} \in Z(R)$ must be commutative. They also have shown that a periodic n-torison free ring (not necessarily with identity) for which $(x y)^{n}-(y x)^{n} \in Z(R)$ is commutative provided that the nilpotents of R form a commutative set. In this paper, we show that an n-torsion free alternative ring R with identity satisfying $x^{n} y^{n}=y^{n} x^{n}$ and $(x y)^{n+1}-y^{n+1} x^{n+1} \in Z(R)$ is commutative. We also prove that if R is an n-torsion free alternative periodic ring suchthat $(x y)^{n+1}-(y x)^{n+1} \in Z(R), n$ is a fixed positive integer and $N(R)$ is commutative, then R is commutative.

PRELIMINARIESA

Throughout this paper, R denotes an alternative periodic ring, $N(R)$ denotes the set of all nilpotent elements of R, $Z(R)$ the center of $R, C(R)$ the commutator ideal of R.

In order to prove our main results, we state the following well-known results.
Lemma: 1[6] Suppose that R is a ring with identity 1. If $x^{m}[x, y]=0$ and $(x+1)^{m}[x, y]=0$, for some x, y in R and some integer $\mathrm{m}>0$, then $[x, y]=0$. A similar statement holds if we assume $[x, y] x^{m}=0$ and $[x, y](x+1)^{m}=0$ instead.

Lemma: 2[4] Let R be an n-torsion free ring with identity 1 such that $\left[x^{n}, y^{n}\right]=0$ for all x, y in R. Let $N(R)$ denote the set of nilpotent elements of R. Then
(i) $a \in N(R), x \in R$ imply $\left[a, x^{n}\right]=0$,
(ii) $\quad a \in N(R), b \in N(R)$ imply $[a, b]=0$.

Lemma: 3 Let R be a periodic ring such that $N(R)$ is commutative. Then the commutator ideal of R is nil and $N(R)$ forms an ideal of R.

Proof: Let $N(R)$ denote the set of nilpotent elements of R and we use the standard argument for the commutative case to show that $u_{1}-u_{2} \in N(R)$, whenever $u_{1}, u_{2} \in N(R)$.

We prove this by induction on k. That is, if $u_{k}=0$ and $r \in R$ then it is true that $(u r)^{k}=(r u)^{k}=0$.
Consider the case $k=2$.

Y. S. Kalyan Chakravarthy* \& K. Suvarna / Commutativity of Alternative Periodic rings with $(x y)^{n+1}-(y x)^{n+1} \in Z(R) /$ IRJPA- 4(1), Jan.-2014.

Let u be an element of R such that $u^{2}=0$ and let j be a positive integer for which ($\left.u r\right)^{j}=e$ is idempotent (possibly zero). Then re - ere is nilpotent and hence commutes with u.

That is, $u r(u r)^{j}-u(u r)^{j} r(u r)^{j}=r(u r)^{j} u-(u r)^{j} r(u r)^{j} u$.
and multiplying on the right of (1) by u gives $u r(u r)^{j} u=0$.
So that $(u r)^{j+2}=(r u)^{j+2}=0$. It follows that u commutes with both ur and ru.
So $(u r)^{2}=(r u)^{2}=0$. Now suppose that the result holds for all y with $y^{m}=0, m<k$.
Suppose $u^{k}=0, k \geq 3$. Determining j as above and multiplying (1) by r on the left and u on the right, we get
$(r u)^{j+2}=r u^{2} s+t u^{2}$
where s and t are elements of the subring generated by r and u. Since $\left(u^{2}\right)^{k-1}=0$, the inductive hypothesis implies both $r u^{2} s$ and $t u^{2}$ are nilpotent. Therefore (2) shows that $r u$ and $u r$ are nilpotent. Again invoking the fact that u must commute with $u r$ and $r u$, we see that $(u r)^{k}=(r u)^{k}=0$. Hence $N(R)$ is an ideal.

MAIN RESULTS

Theorem: 1 Let R be an alternative with identity and n be a fixed positive integer. Suppose that R is n-torsion free and that for all x, y in R,

$$
\begin{equation*}
x^{n} y^{n}=y^{n} x^{n} \tag{3}
\end{equation*}
$$

and $(x y)^{n+1}-y^{n+1} x^{n+1} \in Z(R)$.
Then R is commutative.
Proof: By (3), we have $\left[x^{n}, y^{n}\right]=0$ for all x, y in R and by [5], the commutator ideal is nil. This implies that the set of nilpotent elements $N(R)$ forms an ideal.

Hence by Lemma 2(ii), $N(R)$ is a commutative ideal.
This implies that $N^{2}(R) \subseteq Z(R)$.
By (4), we have $((a+1) b)^{n+1}-b^{n+1}(a+1)^{n+1} \in Z(R)$,

$$
\begin{equation*}
\text { and } \quad(b(a+1))^{n+1}-(a+1)^{n+1} b^{n+1} \in Z(R) \tag{6}
\end{equation*}
$$

By adding (6) and (7) and using the fact that $N^{2}(R) \subseteq Z(R)$, we get
$a b^{n+1}+b^{n+1} a-(n+1) b^{n+1} a-(n+1) a b^{n+1} \in Z(R)$.
That is, $a b^{n+1}+b^{n+1} a-n b^{n+1} a-b^{n+1} a-n a b^{n+1}-a b^{n+1} \in Z(R)$.
So, $-n\left[a, b^{n+1}\right] \in Z(R)$.
That is, $n\left[a, b^{n+1}\right] \in Z(R)$.
Since R is n-torsion free, we get
$\left[a, b^{n+1}\right] \in Z(R)$, where a in $N(R), b$ in R.
Therefore $\left[a, b^{n+1}\right]=[a, b] b^{n}+b\left[a, b^{n}\right] \in Z(R)$.
But by Lemma 2(i), $\left[a, b^{n}\right]=0$ and hence by (6), we get
$[a, b] b^{n} \in Z(R)$.
Y. S. Kalyan Chakravarthy* \& K. Suvarna / Commutativity of Alternative Periodic rings with $(x y)^{n+1}-(y x)^{n+1} \in Z(R) /$ IRJPA- 4(1), Jan.-2014.

Thus $\left[[a, b] b^{n}, b\right]=0=[[a, b], b] b^{n}$. By replacing b by $b+1$ in the above argument and using Lemma 1, we see that $[[a, b], b]=0, a$ in $N(R), b$ in R.

By using Lemma 2(i), (10) and Lemma 1, we get
$0=\left[a, b^{n}\right]=n b^{n-1}[a, b]$.
Since R is n-torsion free, we conclude that $b^{n-1}[a, b]=0$.
By replacing b by $b+1$ in (12) and using Lemma 1 , we get $[a, b]=0$, for all a in $N(R), b$ in R. Thus the nilpotent elements are central and hence
$[x, y] \in Z(R)$, for all x, y in R.
By using (13) and Lemma 1, we get $0=\left[x^{n}, y^{n}\right]=n x^{n-1}\left[x, y^{n}\right]$. By using Lemma 1 and n-torsion free condition, we $\operatorname{get}\left[x, y^{n}\right]=0$, for all x, y in R.]

Similarly, $0=\left[x, y^{n}\right]=n y^{n-1}[x, y]$. This shows that $[x, y]=0$, for all x, y in R.
Theorem: 4.1.2 Let n be a fixed positive integer and R be an n-torsion free alternative periodic ring with identity such that
$(x y)^{n+1}-(y x)^{n+1} \in Z(R)$, for all x, y in R.
If $N(R)$ is commutative, then R is commutative.
Proof: By Lemma 3, $N(R)$ is an ideal of R. Also since $N(R)$ is commutative, $N^{2}(R) \subseteq Z(R)$. Let a in $N(R), b$ in R and replacing $x=(1+a) b$ and $y=(1+a)^{-1}$ in (14), we get
$\left((1+a) b(1+a)^{-1}\right)^{n+1}-\left((1+a)^{-1}(1+a) b\right)^{n+1} \in Z(R)$.
That is, $\left((1+a) b(1+a)^{-1}\right)^{n+1}-b^{n+1} \in Z(R)$.
So, $(1+a) b^{n+1}(1+a)^{-1}-b^{n+1} \in Z(R)$.
Hence $\left[(1+a) b^{n+1}(1+a)^{-1}-b^{n+1}\right](1+a)=(1+a)\left[(1+a) b^{n+1}(1+a)^{-1}-b^{n+1}\right]$
So, $(1+a) b^{n+1}-b^{n+1}(1+a)=(1+a)\left[(1+a) b^{n+1}(1+a)^{-1}-b^{n+1}\right]$.
That is, $a b^{n+1}-b^{n+1} a=(1+a)\left[(1+a) b^{n+1}(1+a)^{-1}-b^{n+1}\right]$.
Since $N(R)$ is a commutator ideal, $(1+a)\left(a b^{n+1}-b^{n+1} a\right)=a b^{n+1}-b^{n+1} a$.
By using (16), we get
$(1+a)\left(a b^{n+1}-b^{n+1} a\right)=(1+a)\left[(1+a) b^{n+1}(1+a)^{-1}-b^{n+1}\right]$. Further since a in $N(R), 1+a$ is a unit in R and thus $\left(a b^{n+1}-b^{n+1} a\right)=\left[(1+a) b^{n+1}(1+a)^{-1}-b^{n+1}\right]$.

Thus $\left[a, b^{n+1}\right] \in Z(R)$, for all a in $N(R)$ and b in R.
Now suppose that $x_{1}, x_{2}, \ldots \ldots, x_{k} \in R$. Since $R / Z(R)$ is commutativite,
$\left(x_{1} \cdot x_{2} \ldots . . x_{k}\right)^{n+1}-x_{1}^{n+1} \cdot x_{2}^{n+1} \ldots \ldots x_{k}^{n+1} \in Z(R) \subseteq N(R)$. Since $N(R)$ is commutative, hence
$\left[a,\left(x_{1} \cdot x_{2} \ldots . . x_{k}\right)^{n+1}\right]=\left[a, x_{1}^{n+1} \cdot x_{2}^{n+1} \ldots \ldots x_{k}^{n+1}\right]$, for a in $N(R)$.
By using (17) and (18), we conclude that

$$
\begin{equation*}
\left[a, x_{1}^{n+1} . x_{2}^{n+1} \ldots \ldots x_{k}^{n+1}\right] \in Z(R), \text { for } a \text { in } N(R), x_{1}, x_{2}, \ldots \ldots, x_{k} \in R . \tag{19}
\end{equation*}
$$

Y. S. Kalyan Chakravarthy* \& K. Suvarna / Commutativity of Alternative Periodic rings with $(x y)^{n+1}-(y x)^{n+1} \in Z(R)$ / IRJPA- 4(1), Jan.-2014.

Let S be the subring of R generated by the $(n+1)^{t h}$ powers of elements of R, then by using (19), we get $[a, x] \in Z(S)$, for all a in $N(S), x$ in S.

Here $Z(S)$ and $N(S)$ denote the center of S and the set of nilpotents of S respectively.
Using the fact that S is periodic, $N(S)$ is commutative and using (19), Theorem of [1] shows that S is commutative.
Hence $\left[x^{n}, y^{n}\right]=0$, for all x, y in R.
Since R is n-torsion free ring with identity satisfying (21) and the hypothesis $(x y)^{n+1}-(y x)^{n+1}$ is always central. Hence by Theorem 1[3], R is commutative.

We give certain examples which show that all the hypothesis of Theorem 1 and Theorem 2 are essential.

Example: 1 Let $R=\left\{\left(\begin{array}{ccc}a & b & c \\ 0 & a^{2} & 0 \\ 0 & 0 & a\end{array}\right): a, b, c, d \in G F(4)\right\}$, and let $n=5$. Then R satisfies all the hypothesis of Theorem 2 except that R in not n-torsion free. Also R is not commutative. Hence the hypothesis R in n-torsion free cannot be omitted in Theorem 2.

Example: 2 Let $R=\left\{\left(\begin{array}{lll}a & b & c \\ 0 & a & d \\ 0 & 0 & a\end{array}\right): a, b, c, d \in G F(2)\right\}$, and let $n=2$. This ring shows that the condition n-torsion free cannot be omit

REFERENCES

[1] Abu-Khuzam, H, "A commutativity theorem for periodic rings", Math. Japon., 32(1987), pp.1-3.
[2] Abu-Khuzam, H., Bell, H.E. and Yaqub, A., "Commutativity of rings satisfying certain polynomial identities", Bull. Austral. Math. Sco., Vol. 44(1991), pp.63-68.
[3] Abu-Khuzam, H., Tominaga, H. and Yaqub, A., "Commutativity theorems for s-unital rings satisfying polynomial identities", Math. J. Okayama Univ., 22(1990), pp.111-114.
[4] Bell, H.E., "On rings with commutating powers", Math. Japon., 24(1979), pp.473-478.
[5] Herstein, I.N., "A commutativity theorem", J. Algerbra., 38(1976), pp.112-118.
[6] Nicholson, W.K. and Yaqub, A., "A commutativity theorem", Algebra Universalis., 10(1980), pp.260-263.

Source of Support: Nil, Conflict of interest: None Declared

