SUPER FILTERS OF B-ALMOST DISTRIBUTIVE LATTICES

Naveen Kumar Kakumanu^{1*} & G. C. Rao²

¹Department of Mathematics, K.B.N. College, Vijayawada, India.

²Department of Mathematics, Andhra University, Visakhapatnam, India.

(Received on: 12-11-13; Revised & Accepted on: 28-11-13)

ABSTRACT

 $m{D}$ ifferent properties of Super filters of B-Almost Distributive Lattices are derived. Basic facts of super filters of B-Almost Distributive Lattices are obtained. Different necessary and sufficient conditions of super filters of B-Almost Distributive Lattices are derived.

AMS 2000 Subject Classification: 06D99.

Keywords: Almost Distributive Lattice (ADL); Birkhoff Center; Filter; Super filter; Maximal element; B-Almost Distributive Lattice (B-ADL).

1. INTRODUCTION

The concept of an Almost Distributive Lattice (ADL) was introduced by U.M. Swamy and G.C. Rao [6] as a common abstraction of most of the existing ring theoretic and lattice theoretic generalizations of a Boolean algebra. The concept of a Birkhoff center B of an ADL A was introduced in [7] and it was observed that B is a relatively complemented ADL. In [4], G. Epstein and A. Horn introduced the concept of a B – algebra as a bounded distributive lattice with center B in which, for any $x, y \in A$, the largest element $x \Rightarrow y$ in B exists with the property $x \land (x \Rightarrow y) \leq y$. The connective $x \Rightarrow y$ of a B – algebra has several applications in logic and computer science [2,3]. For this reason, in [5], we introduced the concept a B – Almost Distributive Lattice (B – ADL) as an ADL in which the lattice of all principal ideals of A is a B – Algebra. In this paper, we introduce the concept of super filters of a B – ADLs and derive some basic properties of super filters of B – ADLs. Also, we obtain different characterizations of super filters of B – ADLs.

2. PRELIMINARIES

In this section, we give the necessary definitions and important properties of an ADL taken from [6] for ready reference.

Definition: 2.1[6] An algebra $(A, \vee, \wedge, 0)$ of type (2, 2, 0) is called an Almost Distributive Lattice (ADL) if it satisfies the following axioms:

- i. $x \lor 0 = x$
- ii. $0 \land x = 0$
- iii. $(x \lor y) \land z = (x \land z) \lor (y \land z)$
- iv. $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$
- v. $x \lor (y \land z) = (x \lor y) \land (x \lor z)$
- vi. $(x \lor y) \land y = y$ for all $x, y, z \in A$.

Corresponding author: Naveen Kumar Kakumanu^{1}
¹Department of Mathematics, K.B.N. College, Vijayawada, India.

Theorem: 2.2 [6] Let m be a maximal element in an ADL A and $x \in A$. Then the following are equivalent:

- i. x is a maximal element of (A, \leq) .
- ii. $x \wedge m = m$.
- iii. $x \wedge a = a$, for all $a \in A$.
- iv. $x \lor a = x$, for all $a \in A$.
- v. $a \lor x$ is maximal, for all $a \in A$.

Definition: 2.3 [6]A non-empty subset I of an ADL A is called an ideal of A. If $x \lor y \in I$ and $x \land a \in I$ for any $x, y \in I$ and $a \in A$. The principal ideal of A generated by x is denoted by (x]. The set $\operatorname{PI}(A)$ of all principal ideals of A forms a distributive lattice under the operations \lor , \land defined by $(x] \lor (y] = (x \lor y]$ and $(x] \land (y] = (x \land y]$ in which (0] is the least element. If A has a maximal element m, then (m] is the greatest element of PI(A).

Definition: 2.4 [6] A non-empty subset F of an ADL A is called a filter if and only if it satisfies the following:

- i. $x, y \in F \Rightarrow x \land y \in F$.
- ii. $x \in F, a \in A \Rightarrow a \lor x \in F$.

For other properties of an ADL, we refer to [6].

The concept of Birkhoff Center of an Almost Distributive Lattice is introduced by U.M. Swamy and S. Ramesh in [7]. The following definition is taken from [7].

Definition: 2.5 [7] Let A be an ADL with a maximal element m and $B(A) = \{x \in A \mid x \land y = 0 \text{ and } x \lor y \text{ is maximal for some } y \in A\}$. Then $(B(A), \lor, \land)$ is a relatively complemented ADL and it is called the Birkhoff center of A. We use the symbol B instead of B(A) when there is no ambiguity.

For other properties of Birkhoff center of an ADL, we refer [7].

In our paper [5], we introduced the concept of a B – Almost Distributive Lattice (or, simply a B – ADL) and studied its properties. The following definition is taken from [5].

Definition: 2.6[5] An ADL $(A, \vee, \wedge, 0)$ with a maximal element m and Birkhoff center B is called a B – ADL if for any $x, y \in A$, there exists $b \in B$ such that

- i. $y \wedge x \wedge b = x \wedge b$.
- ii. If $c \in B$ such that $y \wedge x \wedge c = x \wedge c$, then $b \wedge c = c$ and in this case, $b \wedge m$ is denoted by $x \Rightarrow y$.

The following theorems, B – ADLs are taken from [5] which are required to characterize super filters of B-ADLs.

Theorem: 2.7 [5] Let A be a B – ADL with a maximal element m and Birkhoff center B. Then, for any $x, y \in A$, we have the following:

- i. $y \wedge x \wedge (x \Rightarrow y) = x \wedge (x \Rightarrow y)$ and consequently, $x \wedge (x \Rightarrow y) \leq y \wedge m$.
- ii. If $c \in B$, $x \land c \land m \le y \land m$, then $c \land m \le x \Rightarrow y$.
- iii. $x \land m \le y \land m$ if and only if $x \Rightarrow y = m$.

Theorem: 2.8 [5] Let A be a B – ADL with a maximal element m and Birkhoff center B. Then, for any $x, y, z \in A$ and $a \in B$, we have the following:

- i. $x \wedge (x \Rightarrow a) = x \wedge a \wedge m$.
- ii. $x \land (x \Rightarrow (y \Rightarrow z)) = x \land (y \Rightarrow z)$.
- iii. $a \wedge (x \Rightarrow a) = a \wedge m$.
- iv. $(x \Rightarrow a) \land a = a$.
- v. If $x \land m \le y \land m$, then $(z \Rightarrow x) \le (z \Rightarrow y)$ and $(x \Rightarrow z) \ge (y \Rightarrow z)$.

For other properties of a B – ADLs, we refer to [5].

3. SUPER FILTERS OF B-ADLs

Definition 3.1 Let A be a B - ADL with a maximal element m and Birkhoff center B. Suppose S is a non-empty subset of A. Then S is said to be a super filter of a B - ADL A, if it satisfies the following conditions: for all $x, y \in A$;

 S_1 : If $x, y \in S$, then $x \wedge y \in S$.

 S_2 : If $x \in S$ and $x \wedge m \leq y \wedge m$, then $y \in S$.

Example: 3.2 Let A be a discrete ADL with 0 and with at least two elements and Birkhoff center B. Fix $m(\neq 0) \in A$ and define for any $x, y \in A$,

$$(x \Rightarrow y) = 0 \text{ if } x \neq 0, y=0$$

= m otherwise.

Then $(A, \vee, \wedge, \Rightarrow, 0, m)$ is a B – ADL and $\{m\}$ is a super filter in A.

Theorem: 3.3 Let A be a B - ADL with a maximal element m and Birkhoff center B. Then every filter of a A containing m is a super filter of A.

Proof: Let S be a filter of B – ADL A containing m. Then, for any $x, y \in S$, we get $x \land y \in S$. Let $x \in S$ and $x \land m \le y \land m$. Then $x \land m \in S$ (since $m \in S$). Now $y \land x \land m = x \land m \land y \land m = x \land m$. Then $y \land x \land m \in S$. Now $y = y \lor (y \land x \land m) \in S$. Therefore S is a super filter of A.

Theorem: 3.4 Let A be a B – ADL with a maximal element m and Birkhoff center B. Suppose S is a non-empty subset of A. Then S is a super filter of A if and only if it satisfies the following conditions:

i. $m \in S$.

ii. If $x \in S$, $(x \Rightarrow y) \in S$, then $y \in S$ for all $x, y \in B$.

Proof: Suppose S is a super filter of A and $x, y \in B$. Then, clearly $m \in S$. Let $x \in S$ and $(x \Rightarrow y) \in S$. Then $x \wedge (x \Rightarrow y) \in S$. But $x \wedge (x \Rightarrow y) = x \wedge y \wedge m = y \wedge x \wedge m \in S$. Since S is a filter and $y \wedge x \wedge m \in S$, $y \in A$, we get that $y \vee (y \wedge x \wedge m) = y \in S$. Conversely, suppose conditions (i) and (ii) hold. Let $x, y \in S$. Since $y \in B$, we have

$$y \land m \le (x \Rightarrow y)$$
 implies $y \land m \le (x \Rightarrow (x \land y))$ (since $(x \Rightarrow y) = (x \Rightarrow (x \land y))$ implies $(y \Rightarrow y) \le (y \Rightarrow (x \Rightarrow (x \land y)))$ implies $m = (y \Rightarrow (x \Rightarrow (x \land y))) \in S$.

Since $y \in S$, $(y \Rightarrow (x \Rightarrow (x \land y))) \in S$ and $y \in B$, $(x \Rightarrow (x \land y)) \in B$ by our assumption, we get $(x \Rightarrow (x \land y)) \in S$. Again, since $x \in S$, $(x \Rightarrow (x \land y)) \in S$ and $x \in B$, $x \land y \in B$ by our assumption, we get $x \land y \in S$. Let $x \in S$ and $x \land m \leq y \land m$. Then $(x \Rightarrow y) = m \in S$. Since $x \in S$, $(x \Rightarrow y) \in S$ and $x \in B$, $y \in B$ we get $y \in S$. Therefore S is a super filter of A.

Theorem: 3.5 Let A be a B-ADL with a maximal element m and Birkhoff center B. Suppose S is a non-empty subset of A and $x, y, z \in B$. Then S is a super filter of A if and only if $x \wedge m \leq (y \Rightarrow z)$ implies $z \in S$ for all $x, y \in S$ and $z \in A$.

Proof: Suppose S is a super filter of A. Let $x \land m \le (y \Rightarrow z)$ for all $x, y \in S$ and $z \in A$. Then $(x \Rightarrow x) \le (x \Rightarrow (y \Rightarrow z))$ and hence $m = (x \Rightarrow (y \Rightarrow z)) \in S$. Since $x \in S, (x \Rightarrow (y \Rightarrow z)) \in S$, by Theorem 3.4, we get $(y \Rightarrow z) \in S$. Again, since $y \in S, (y \Rightarrow z) \in S$, by Theorem 3.4, we get that $z \in S$.

Conversely, suppose $x \land m \le (y \Rightarrow z)$ implies $z \in S$ for all $x, y \in S$ and $z \in A$. Let $x, y \in S$. Since $y \in B$, we have $y \land m \le (x \Rightarrow y)$ and hence $y \land m \le (x \Rightarrow (x \land y))$. By our assumption, we get $x \land y \in S$. Let $x \in S$ and $x \land m \le y \land m$. Then $(x \Rightarrow x) \le (x \Rightarrow y)$ and hence $m \le (x \Rightarrow y)$. Thus, by our assumption, we get $y \in S$. Hence S is a super filter of A.

The following corollary is direct consequence of the above theorem.

Corollary: 3.6 Let A be a B - ADL with a maximal element m and Birkhoff center B. Suppose S is a non-empty subset of A and $x, y, z \in B$. Then S is a super filter of A if and only if $(x \Rightarrow (y \Rightarrow z)) = m$ implies $z \in S$ for all $x, y \in S, z \in A$.

Theorem: 3.7 Let A be a B - ADL with a maximal element m and Birkhoff center B. Suppose S is a non-empty subset of A and $y \in S$. Then $((x \Rightarrow y) \Rightarrow z) \in S$ implies $(x \Rightarrow (y \Rightarrow z)) \in S$ for all $x \in A$ and $y, z \in B$.

Proof: Let S be a super filter of A. Suppose $((x \Rightarrow y) \Rightarrow z) \in S$. Since $y \in B$, we have $y \land m \le (x \Rightarrow y)$ and hence $(y \Rightarrow z) \ge ((x \Rightarrow y) \Rightarrow z)$. Thus $((x \Rightarrow y) \Rightarrow z) \Rightarrow (y \Rightarrow z) = m$. By Corollary 3.6, we get $(y \Rightarrow z) \in S$. Since $(y \Rightarrow z) \le (x \Rightarrow (y \Rightarrow z))$, we have $(y \Rightarrow z) \Rightarrow (x \Rightarrow (y \Rightarrow z)) = m \in S$. Since $(y \Rightarrow z) \in S$, $(y \Rightarrow z) \Rightarrow (x \Rightarrow (y \Rightarrow z)) \in S$, by Theorem 3.4, we get $(x \Rightarrow (y \Rightarrow z)) \in S$.

Finally, we conclude this paper with the following.

Theorem: 3.8 Let A be a B – ADL with a maximal element m and Birkhoff center B. Suppose S is a non-empty subset of A and $y, z \in S$. Then $((x \Rightarrow z) \Rightarrow y) \in S$ implies $x \Rightarrow y \in S$ for all $x \in A$ and $y, z \in B$.

Proof: Suppose $((x \Rightarrow z) \Rightarrow y) \in S$ for all $x \in A$ and $y, z \in B$. Since $z \in B$, we have $z \land m \le (x \Rightarrow z)$ and hence $(z \Rightarrow (x \Rightarrow z)) = m \in S$. Since $z \in S$, by Theorem 3.4, we get $(x \Rightarrow z) \in S$. Again, since $(x \Rightarrow z) \in S$, by Theorem 3.4, we get $y \in S$. Since $y \in B$ and $y \land m \le (x \Rightarrow y)$ and hence $(y \Rightarrow (x \Rightarrow y)) = m \in S$. Since $y \in S$, by Theorem 3.4, we get $(x \Rightarrow y) \in S$.

BIBLIOGRAPHY

- [1] Birkhoff, G.: Lattice Theory, Amer. Math. Soc. Colloq. Publ. XXV, Providence, (1967), U.S.A.
- [2] G. Epstein and A. Horn: A propositional calculus for affirmation and negation with linearly ordered matrix} (abstract), J. Symb. Logic, 1972, Vol. 37, 439.
- [3] G. Epstein and A. Horn: Propositional calculi based on subresiduation (abstract), J. Symb. Logic, 1973, Vol. 38, 546-547.
- [4] Epstein, G. and Horn, A.: P-algebras, an abstraction from Post algebras, Vol. 4, Number 1,195-206, 1974, Algebra Universalis.
- [5] Rao, G.C. and Naveen Kumar Kakumanu, B-Almost Distributive Lattices, Accepted for publication in Southeast Asian Bullettin of Mathematics.
- [6] Swamy, U.M. and Rao, G.C., Almost Distributive Lattices, J. Aust. Math. Soc. (Series A), Vol.31 (1981), 77-91.
- [7] Swamy, U.M. and Ramesh, S., Birkhoff center of ADL, Int. J. Algebra, Vol.3 (2009), 539-546.

Source of Support: Nil, Conflict of interest: None Declared