International Research Journal of Pure Algebra -3(11), 2013, 340-342
 CEPPA
 Available online through www.rjpa.info ISSN 2248-9037

POLYNOMIAL MATRIX FULL RANK DECOMPOSITION AND ITS APPLICATIONS
 Junqing Wang* \& Xin Fan

Department of Mathematics, Dezhou University, Shandong - 253055, PR China.
(Received on: 26-11-13; Revised \& Accepted on: 30-11-13)

Abstract

In this paper, we have proved the equivalence of minor left prime and factor left prime and the existence of full rank decomposition for matrices over $K^{\text {sxt }}[X]$.Moreover we have given a application of full rank decomposition, namely, some non-singular matrix is shift equivalent to every non-nilpotent matrix over $K^{s \times t}[X]$.

Keywords: polynomial matrix; full rank decomposition; prime matrix.

1. INTRODUCTION

Let A is a polynomial matrix of field, $A \in F^{s \times t}\left[x_{1}, x_{2} \cdots x_{n}\right]$, and rankA $=r$. Now, is there a full rank decomposition to make $A=A_{1} A_{2}, A_{1} \in F^{s \times r}\left[x_{1}, x_{2} \cdots x_{n}\right], A_{2} \in F^{r \times t}\left[x_{1}, x_{2} \cdots x_{n}\right]$. D.C.Youla have indicated that the result hold up when $n \leq 2$, but the result didn't establish when $n \geq 3$ in reference [3]. By studying the equivalent between minor left prime and factor left prime, we can certify the existence of full rank decomposition for matrices over $K^{\text {sxt }}[X]$.

2. PREPARATION KNOWLEDGE

Definition: $1^{[1]}$ Let K is a skew field, $K\left[x_{1}, x_{2} \cdots x_{n}\right]$ represents a polynomial ring which has n variable, denoted by $K[X] . K^{\text {sxt }}\left[x_{1}, x_{2} \cdots x_{n}\right]$ represents the whole $s \times t$ order matrix in $K[X]$, denoted by $K^{\text {s×t }}[X]$. Every matrix in $K^{s \times t}[X]$ is called polynomialmatrix.

Definition: $2^{[1]}$ As to m order square matrix M, $\operatorname{det} M=\frac{M^{*}}{M^{-1}}$ is a polynomial. If $\operatorname{det} M \neq 0$, then M is called unimodular matrix.

Definition: $3^{[2]}$ Let $A \in K^{5 \times t}[X]$, if the greatest common divisor of $s \times s$ order minor of A is a invertible element, we can call A is a minor left prime matrix
As to the whole polynomial matrix decomposition of $A, A=A_{1} A_{2}$. If A_{1} is a square matrix, then A_{2} is unimodular matrix. We call A is a factor left prime.

Definition: $4^{[5]}$ Let R is a associative rings, square matrix $A, B \in R$. If there is a positive integer l and $B_{i}, C_{i} \in R$,then $A=B_{1} C_{1}, C_{1} B_{1}=B_{2} C_{2}, C_{2} B_{2}=B_{3} C_{3} \cdots B_{l} C_{l}=B$, we say A is shift equivalent to B.

Lemma: $1^{[4]}$ Let $A \in K^{s \times t}[X](s \leq t), d(x)$ is the greatest common divisor of the highest order minor of A, there is a decomposition $A=H L$ such that $\operatorname{det} H=d(x), H \in K^{5 \times s}[x], L \in K^{\text {sxt }}[x]$.

Lemma: $2^{[4]}$ Let $A \in k^{s \times t}[X](s \leq t)$, we can rewrite A as $\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$,where A is a non-singular and $A_{22} A_{11}^{-1} A_{12}$ is a polynomial matrix. If $\left(A_{11}, A_{12}\right)$ is a factor left prime, then $A_{22} A_{11}^{-1}$ is a polynomial matrix.

Lemma: $\mathbf{3}$ As to the matrices of $K^{s \times t}[X]$, minor left prime matrix is equivalent to factor left prime matrix.
Proof: Minor left prime matrix \Rightarrow factor left prime matrix
Let $A \in K^{s \times t}[X](s \leq t)$ is a minor left prime matrix, $d(x)$ is the greatest common divisor of the highest order minor of A. If there is a decomposition $A=A_{1} A_{2}, A_{1} \in K^{\text {s×s }}[X], A_{2} \in K^{\text {sxt }}[X]$. Then $d(x)$ can be divisible by A_{1}. According to A is a minor left prime matrix, we can learn $d(x)$ is a invertible element. So, $\operatorname{det} A_{1}$ is a invertible element. Thus, A_{1} is a unimodular matrix. So A is a factor left prime.factor left prime matrix \Rightarrow Minor left prime matrix

Let $A \in K^{s \times t}[X](s \leq t)$ is a factor left prime matrix. $d(x)$ is the greatest common divisor of the highest order minor of A. According to lemma 1 , there is a decomposition $A=A_{1} A_{2}$ such that $\operatorname{det} A_{1}=d(x)$. Because of A is a factor left prime matrix, then $d(x)$ is a invertible element. So A is a minor left prime matrix.

3. MAIN CONCLUSION

Theorem: 1 Let $A \in K^{s \times t}[X](s \leq t)$, rank $A=r<s$. Then, there is a decomposition such that $A=A_{1} A_{2}$, $A_{1} \in K^{5 \times r}[x], A_{2} \in K^{r \times t}[x]$.

Proof: As to arbitrarily matrix A, by the transformation of row and line, A can be written as follows:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],
$$

$\operatorname{det} A \neq 0, A_{11} \in K^{r \times r}[X], A_{12} \in K^{r \times(t-r)}[X], A_{21} \in K^{(s-r) \times r}[X], A_{22} \in K^{(s-r) \times(t-r)}[X], A_{22}=A_{21} A_{11}^{-1} A_{12}$.
Let $d(x)$ is the greatest common divisor of $r \times r$ order minor matrix of A. According to lemma 1 , there is a decomposition $\left(A_{11}, A_{12}\right)=H\left(L_{11}, L_{12}\right), H \in K^{r \times r}[X], L_{11} \in K^{r \times r}[X], L_{12} \in K^{r \times(t-r)}[X]$, then $\operatorname{det} H=d(x)$, $\left(L_{11}, L_{12}\right)$ is a factor left prime matrix. According to lemma 3, (L_{11}, L_{12}) is a minor left prime. Because of $A_{21} L_{11}^{-1} L_{12}$ $=A_{21}\left(H L_{11}\right)^{-1}\left(H L_{12}\right)=A_{21} A_{11}^{-1} A_{22}$ is a polynomial matrix, then $A_{21} A_{11}^{-1}$ is a polynomial matrix. So there is a decomposition as follows:

$$
\begin{aligned}
& \left(\begin{array}{ll}
L_{11} & L_{12} \\
A_{21} & A_{22}
\end{array}\right)=\binom{I_{r}}{A_{21} L_{11}^{-1}}\left(\begin{array}{ll}
L_{11} & L_{12}
\end{array}\right) \\
& \begin{aligned}
& A=\left(\begin{array}{cc}
H & 0 \\
0 & I_{m-r}
\end{array}\right)\left(\begin{array}{ll}
L_{11} & L_{12} \\
A_{21} & A_{22}
\end{array}\right)=\left(\begin{array}{cc}
H & 0 \\
0 & I_{m-r}
\end{array}\right)\binom{I_{r}}{A_{21} A_{11}^{-1}}\left(\begin{array}{ll}
L_{11} & L_{12}
\end{array}\right)=\binom{H}{A_{21} L_{11}^{-1}}\left(\begin{array}{ll}
L_{11} & L_{12}
\end{array}\right) \\
&=A_{1} A_{2} \\
& A_{1}=\binom{H}{A_{21} L_{11}^{-1}} \in K^{5 \times r}[X], A_{2}=\left(\begin{array}{ll}
L_{11} & L_{12}
\end{array}\right) \in K^{r \times t}[X] .
\end{aligned} .
\end{aligned}
$$

Theorem: 2 Let $A \in K^{n \times n}[X]$, rank $A=r<n$, then, there is a non-singular square matrix B such that A is shift equivalent to B.

Proof: According to theorem 1, there is a decomposition $A=B_{1} C_{1}, B \in K^{n \times r}[X], C \in K^{r \times n}$, rank $B_{1}=\operatorname{rank} C_{1}=r, C_{1} B_{1} \in K^{r \times r}[X]$. If $C_{1} B_{1}$ is a non-singular square matrix, then suppose $B=C_{1} B_{1}$, and $A^{2}=B_{1}\left(C_{1} B_{1}\right) C_{1}, \operatorname{rank} A^{2}=\operatorname{rank}\left(C_{1} B_{1}\right)=r=\operatorname{rank} A$.

If $\operatorname{rank}\left(C_{1} B_{1}\right)=r_{1}<r$, then we can continue full rank decomposition to $C_{1} B_{1}$, we can obtain decomposition sequence $A=B_{1} C_{1}, C_{1} B_{1}=B_{2} C_{2}, C_{2} B_{2}=B_{3} C_{3} \cdots, B_{i} C_{i}$ and $C_{i} B_{i}(i=1,2, \cdots)$ are square matrix. Noting the order of $C_{i} B_{i}$ is strict smaller than $C_{i-1} B_{i-1}$, and n is limited, so there must be a positive integer number such that $C_{i} B_{i}$ is a non-singular square matrix. Because:
$A^{k}=\left(B_{1} C_{1}\right)^{k}=B_{1}\left(C_{1} B_{1}\right)^{k-1} C_{1}=\cdots=B_{1} C_{2} \cdots B_{k-1}\left(B_{k} C_{k}\right) C_{k-1} \cdots C_{2} C_{1}$
$A^{k+1}=B_{1} C_{2} \cdots B_{k-1} B_{k}\left(C_{k} B_{k}\right) C_{k} C_{k-1} \cdots C_{2} C_{1}$
If A a non-singular square matrix, then $A^{k+1} \neq 0$, so $C_{k} B_{k} \neq 0$. Suppose $B_{k} C_{k}=B$, then B a non-singular square matrix , and A is shift equivalent to B.

Let $B_{k} \in K^{p \times r}[X], C_{k} \in K^{r \times p}[X]$, according to full rank decomposition above, we know that rank $B_{k} C_{k}=r$, because of $C_{k} B_{k} \in K^{r \times r}[X]$ and $C_{k} B_{k}$ a non-singular square matrix, so $\operatorname{rank} B_{k} C_{k}=r=\operatorname{rank}\left(C_{k} B_{k}\right)$. According to the analysis above, we can obtain the conclusion as follows:

$$
\operatorname{rank} A^{k+1}=\operatorname{rank}\left(C_{k} B_{k}\right)=\operatorname{rank}\left(B_{k} C_{k}\right)=\operatorname{rank} A^{k}
$$

REFERENCE

[1] Wajin Zhuang, Introduction to Matrix Theory over Skew Field [M], Beijing: Science press, 2006
[2] Wang Enping, Wang Chaozhu, Polynomial and Polynomial matrix [M], Beijing: National Defence Industry Press, 1992
[3] C.A.Weibel, An Introduction to Homological Algebra [M], Cambridge university Press, 1994
[4] D.C.Guiver, N.K.Bose, Polynomial Matrix Primitive Factorization Over Arbitrary Coefficient Field and Related Results [J], IEEE Trans. Circuits System, 1982
[5] U.Fiebig, Gyration Numbers for Involution of Sub shifts of Finite Type [M], Forum Math, 1992
[6] Sheng decheng, Abstract Algebra [M], Beijing: Science press, 2000.2

Source of Support: Nil, Conflict of interest: None Declared

