International Research Journal of Pure Algebra -3(11), 2013, 340-342 Available online through www.rjpa.info

POLYNOMIAL MATRIX FULL RANK DECOMPOSITION AND ITS APPLICATIONS

Junqing Wang* & Xin Fan

Department of Mathematics, Dezhou University, Shandong - 253055, PR China.

(Received on: 26-11-13; Revised & Accepted on: 30-11-13)

ABSTRACT

In this paper, we have proved the equivalence of minor left prime and factor left prime and the existence of full rank decomposition for matrices over $K^{s \times t}[X]$. Moreover we have given a application of full rank decomposition, namely, some non-singular matrix is shift equivalent to every non-nilpotent matrix over $K^{s \times t}[X]$.

Keywords: polynomial matrix; full rank decomposition; prime matrix.

1. INTRODUCTION

Let *A* is a polynomial matrix of field, $A \in F^{s \times t}[x_1, x_2 \cdots x_n]$, and rankA = r. Now, is there a full rank decomposition to make $A = A_1A_2, A_1 \in F^{s \times r}[x_1, x_2 \cdots x_n], A_2 \in F^{r \times t}[x_1, x_2 \cdots x_n]$. *D.C.Youla* have indicated that the result hold up when $n \le 2$, but the result didn't establish when $n \ge 3$ in reference [3]. By studying the equivalent between minor left prime and factor left prime, we can certify the existence of full rank decomposition for matrices over $K^{s \times t}[X]$.

2. PREPARATION KNOWLEDGE

Definition: 1^[1] Let K is a skew field, $K[x_1, x_2 \cdots x_n]$ represents a polynomial ring which has *n* variable, denoted by K[X]. $K^{s \times t}[x_1, x_2 \cdots x_n]$ represents the whole $s \times t$ order matrix in K[X], denoted by $K^{s \times t}[X]$. Every matrix in $K^{s \times t}[X]$ is called polynomial matrix.

Definition: $2^{[1]}$ As to *m* order square matrix *M*, det $M = \frac{M^*}{M^{-1}}$ is a polynomial. If det $M \neq 0$, then *M* is called unimodular matrix.

Definition: $3^{[2]}$ Let $A \in K^{s \times t}[X]$, if the greatest common divisor of $s \times s$ order minor of A is a invertible element, we can call A is a minor left prime matrix

As to the whole polynomial matrix decomposition of A, $A = A_1A_2$. If A_1 is a square matrix, then A_2 is unimodular matrix. We call A is a factor left prime.

Definition: $4^{[5]}$ Let R is a associative rings, square matrix $A, B \in R$. If there is a positive integer l and $B_i, C_i \in R$, then $A = B_1C_1, C_1B_1 = B_2C_2, C_2B_2 = B_3C_3 \cdots B_lC_l = B$, we say A is shift equivalent to B.

Lemma: $1^{[4]}$ Let $A \in K^{s \times t}[X](s \le t), d(x)$ is the greatest common divisor of the highest order minor of A, there is a decomposition A = HL such that det H = d(x), $H \in K^{s \times s}[x], L \in K^{s \times t}[x]$.

*Corresponding author: Junqing Wang Department of Mathematics, Dezhou University, Shandong - 253055, PR China.

Lemma:
$$2^{[4]}$$
 Let $A \in k^{s \times t} [X] (s \le t)$, we can rewrite A as $\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$, where A is a non-singular and $A_{22}A_{11}^{-1}A_{12}$

is a polynomial matrix. If (A_{11}, A_{12}) is a factor left prime, then $A_{22}A_{11}^{-1}$ is a polynomial matrix.

Lemma: 3 As to the matrices of $K^{s \times t}[X]$, minor left prime matrix is equivalent to factor left prime matrix.

Proof: Minor left prime matrix \Rightarrow factor left prime matrix

Let $A \in K^{s \times t}[X](s \le t)$ is a minor left prime matrix, d(x) is the greatest common divisor of the highest order minor of A. If there is a decomposition $A = A_1A_2$, $A_1 \in K^{s \times s}[X]$, $A_2 \in K^{s \times t}[X]$. Then d(x) can be divisible by A_1 . According to A is a minor left prime matrix, we can learn d(x) is a invertible element. So, det A_1 is a invertible element. Thus, A_1 is a unimodular matrix. So A is a factor left prime factor left prime matrix \Rightarrow Minor left prime matrix

Let $A \in K^{s \times t} [X] (s \le t)$ is a factor left prime matrix. d(x) is the greatest common divisor of the highest order minor of A. According to lemma 1,there is a decomposition $A = A_1 A_2$ such that det $A_1 = d(x)$. Because of A is a factor left prime matrix, then d(x) is a invertible element. So A is a minor left prime matrix.

3. MAIN CONCLUSION

Theorem: 1 Let $A \in K^{s \times t}[X]$ $(s \le t)$, rankA = r < s. Then, there is a decomposition such that $A = A_1A_2$, $A_1 \in K^{s \times r}[x], A_2 \in K^{r \times t}[x]$.

Proof: As to arbitrarily matrix A, by the transformation of row and line, A can be written as follows:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

$$\det A \neq 0, \ A_{11} \in K^{r \times r}[X], A_{12} \in K^{r \times (t-r)}[X], A_{21} \in K^{(s-r) \times r}[X], A_{22} \in K^{(s-r) \times (t-r)}[X], A_{22} = A_{21}A_{11}^{-1}A_{12}$$

Let d(x) is the greatest common divisor of $r \times r$ order minor matrix of A. According to lemma 1, there is a decomposition $(A_{11}, A_{12}) = H(L_{11}, L_{12}), H \in K^{r \times r}[X], L_{11} \in K^{r \times r}[X], L_{12} \in K^{r \times (t-r)}[X]$, then det H = d(x), (L_{11}, L_{12}) is a factor left prime matrix. According to lemma 3, (L_{11}, L_{12}) is a minor left prime. Because of $A_{21}L_{11}^{-1}L_{12} = A_{21}(HL_{11})^{-1}(HL_{12}) = A_{21}A_{11}^{-1}A_{22}$ is a polynomial matrix, then $A_{21}A_{11}^{-1}$ is a polynomial matrix. So there is a decomposition as follows:

$$\begin{pmatrix} L_{11} & L_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} I_r \\ A_{21}L_{11}^{-1} \end{pmatrix} (L_{11} & L_{12})$$

$$A = \begin{pmatrix} H & 0 \\ 0 & I_{m-r} \end{pmatrix} \begin{pmatrix} L_{11} & L_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} H & 0 \\ 0 & I_{m-r} \end{pmatrix} \begin{pmatrix} I_r \\ A_{21}A_{11}^{-1} \end{pmatrix} (L_{11} & L_{12}) = \begin{pmatrix} H \\ A_{21}L_{11}^{-1} \end{pmatrix} (L_{11} & L_{12})$$

$$= A_1 A_2$$

$$A_1 = \begin{pmatrix} H \\ A_{21}L_{11}^{-1} \end{pmatrix} \in K^{s \times r} [X], A_2 = (L_{11} & L_{12}) \in K^{r \times t} [X].$$

Theorem: 2 Let $A \in K^{n \times n}[X]$, rankA = r < n, then, there is a non-singular square matrix B such that A is shift equivalent to B.

© 2013, RJPA. All Rights Reserved

Proof: According to theorem 1, there is a decomposition $A = B_1C_1$, $B \in K^{n \times r}[X]$, $C \in K^{r \times n}$, $rankB_1 = rankC_1 = r$, $C_1B_1 \in K^{r \times r}[X]$. If C_1B_1 is a non-singular square matrix, then suppose $B = C_1B_1$, and $A^2 = B_1(C_1B_1)C_1$, $rankA^2 = rank(C_1B_1) = r = rankA$.

If $rank(C_1B_1) = r_1 < r$, then we can continue full rank decomposition to C_1B_1 , we can obtain decomposition sequence $A = B_1C_1, C_1B_1 = B_2C_2, C_2B_2 = B_3C_3 \cdots, B_iC_i$ and C_iB_i ($i = 1, 2, \cdots$) are square matrix. Noting the order of C_iB_i is strict smaller than $C_{i-1}B_{i-1}$, and n is limited, so there must be a positive integer number such that C_iB_i is a non-singular square matrix. Because:

$$A^{k} = (B_{1}C_{1})^{k} = B_{1}(C_{1}B_{1})^{k-1}C_{1} = \dots = B_{1}C_{2}\cdots B_{k-1}(B_{k}C_{k})C_{k-1}\cdots C_{2}C_{1}$$
$$A^{k+1} = B_{1}C_{2}\cdots B_{k-1}B_{k}(C_{k}B_{k})C_{k}C_{k-1}\cdots C_{2}C_{1}$$

If A a non-singular square matrix, then $A^{k+1} \neq 0$, so $C_k B_k \neq 0$. Suppose $B_k C_k = B$, then B a non-singular square matrix, and A is shift equivalent to B.

Let $B_k \in K^{p \times r}[X], C_k \in K^{r \times p}[X]$, according to full rank decomposition above, we know that $rankB_kC_k = r$, because of $C_kB_k \in K^{r \times r}[X]$ and C_kB_k a non-singular square matrix, so $rankB_kC_k = r = rank(C_kB_k)$. According to the analysis above, we can obtain the conclusion as follows:

$$rankA^{k+1} = rank(C_kB_k) = rank(B_kC_k) = rankA^k$$

REFERENCE

[1] Wajin Zhuang, Introduction to Matrix Theory over Skew Field [M], Beijing: Science press, 2006

[2] Wang Enping, Wang Chaozhu, Polynomial and Polynomial matrix [M], Beijing: National Defence Industry Press, 1992

[3] C.A.Weibel, An Introduction to Homological Algebra [M], Cambridge university Press, 1994

[4] D.C.Guiver, N.K.Bose, Polynomial Matrix Primitive Factorization Over Arbitrary Coefficient Field and Related Results [J], IEEE Trans. Circuits System, 1982

[5] U.Fiebig, Gyration Numbers for Involution of Sub shifts of Finite Type [M], Forum Math, 1992

[6] Sheng decheng, Abstract Algebra [M], Beijing: Science press, 2000.2

Source of Support: Nil, Conflict of interest: None Declared