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ABSTRACT 

In this paper, we obtained the degree of approximation of a functions belonging to the Lip α class by almost 
generalized Nörlund means of conjugate Fourier series. 
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1. DEFINITION AND NOTATION 
 
Let f (x) be a 2π- periodic function and integrable in the Lebesgue sense. The Fourier series f (x) is given by  
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The Conjugate series of Fourier series (1.1) is given by  
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The degree of approximation of a function f: R→R by a trigonometric polynomial tn of order n is defined by Zygmund 
[7] 
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A function αLipf ∈  if 
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Lorentz [3] has defined:  
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na be an infinite series whose nth partial sum is denoted by Sn. Then the sequence {sn} is said to be almost 

convergent to a limit s, if  
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uniformly with respect to p. 
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Let { }np  and { }nq  be the sequence of positive constants such that  
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where Pn, Qn and Rn → ∞ as n→∞  . 
 

The series ∑
∞

1=n
na or the sequence {sn} is said to be almost generalized Nörlund (N, pn, qn) Qureshi [4] summable to s, 
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tends to s, as n→∞,uniformly with respect to p, where  
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We shall use the following notations: 
 
( ) ( ) ( ) ( )i t f x t f x tψ = + − −
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2. MAIN THEOREM 
 
The degree of approximation of functions belonging to Lipschitz class has been discussed by a number of researchers 
like  Chandra[1], Holland[2], Qureshi[4][5]etc. Therefore, the purpose of present paper is to establish a new theorem on 
the degree of approximation of the function belonging to Lip α class by almost generalized Nörlund means of its 
conjugate Fourier series. We prove the  following: 
 
Theorem 2.1: If  f : R→ R  is 2π- periodic and Lebesgue integrable on [-π,π]  and  f ∊ Lip α class then the degree of 
approximation of function f by almost generalized Nörlund means of its conjugate Fourier series of  f  satisfies, for 
n=0,1,2,3,… 
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where {pn} and {qn} are non-negative, monotonic and non-increasing sequence of real constants such that 
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3. LEMMAS: For the proof of our theorem, we require following lemmas: 
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By using for havewetttnnt
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This complete proof of the lemma (3.1). 
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This complete proof of the lemma (3.2).

  
4. PROOF OF THE MAIN THEOREM 
 
Let );( xfsn  be the nth partial sum of conjugate series (1.2), we have 
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Then the almost generalized Nörlund transform of  );( xfsn  is given by 
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Now consider, 
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 Combining (4.1),(4.2) and (4.3) we have 
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This complets the proof of the theorem. 
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