International Research Journal of Pure Algebra -3(7), 2013, 259-262 Available online through www.rjpa.info

Minimal Bi-ideals in Γ-Semirings

R. D. Jagatap^{1*} & Y. S. Pawar²

¹Y. C. College of Science, Karad, India

²Department of Mathematics, Shivaji University, Kolhapur, India

(Received on: 12-07-13; Revised & Accepted on: 26-07-13)

ABSTRACT

In this paper we define a minimal bi-ideal and a 0-minimal bi-ideal of a Γ -semiring. Also we introduce the concepts of a bi-simple Γ -semiring and a 0-bi-simple Γ -semiring. Several characterizations of minimal bi-ideal, 0-minimal bi-ideal, bi-simple Γ -semiring and 0-bi-simple Γ -semiring are furnished.

AMS Mathematics Subject Classification (2000): 16Y60, 16Y99.

Key words: Bi-ideal, minimal bi-ideal, 0-minimal bi-ideal, bi-simple Γ *-semiring, 0-bi-simple* Γ *-semiring.*

1. INTRODUCTION

The notion of a Γ -semiring was introduced by Rao [12] as a generalization of a ring, a Γ -ring and a semiring. It is well known that ideals play an important role in any abstract algebraic structures. Characterizations of ideals in a semigroup were given by Lajos [8], while ideals in semirings were characterized by Iseki [4, 5].

The notion of a bi-ideal was first introduced for semigroups by Good and Hughes [2]. The concept of a bi-ideal for a ring was given by Lajos [9]. Also in [10, 11] Lajos discussed some characterizations of bi-ideals in semigroups. Shabir Ali Batool in [13] gave some properties of bi-ideals in a semiring. Minimal bi-ideal for a semigroup was studied by Krgovic in [7] and for a Γ -semigroup by Iampan [3].

Hence in this paper we introduce the concepts of a minimal bi-ideal and 0-minimal bi-ideal of a Γ -semiring. Further discussed some of their characterizations. Also we introduce the notions of a bi-simple Γ -semiring and a 0-bi-simple Γ -semiring are also furnished.

2. PRELIMINARIES

First we recall some definitions of the basic concepts of Γ -semirings that we need in sequel. For this we follow Dutta and Sardar [1].

Definition 2.1: Let *S* and Γ be two additive commutative semigroups. *S* is called a Γ -semiring if there exists a mapping $S \times \Gamma \times S \longrightarrow S$ denoted by $a\alpha b$; for all $a, b \in S$ and for all $\alpha \in \Gamma$ satisfying the following conditions:

(i) $a\alpha(b+c) = (a\alpha b) + (a\alpha c)$ (ii) $(b+c)\alpha a = (b\alpha a) + (c\alpha a)$ (iii) $a(\alpha + \beta)c = (a\alpha c) + (a\beta c)$ (iv) $a\alpha(b\beta c) = (a\alpha b)\beta c$; for all $a, b, c \in S$ and $\beta \in \Gamma$.

Obviously, every semiring is a Γ -semiring.

Definition 2.2: An element $0 \in S$ is said to be an absorbing zero if $0\alpha a = 0 = a\alpha 0$, a + 0 = 0 + a = a; for all $a \in S$ and for all $\alpha \in \Gamma$.

Now onwards *S* denotes a Γ -semiring with absorbing zero unless otherwise stated.

Definition 2.3: A non empty subset T of S is said to be a sub- Γ -semiring of S if (T, +) is a subsemigroup of (S, +) and $a\alpha b \in T$; for all $a, b \in T$ and for all $\alpha \in \Gamma$.

Corresponding author: R. D. Jagatap^{1}

R. D. Jagatap^{1*} & Y. S. Pawar²/Minimal Bi-ideals in *Geminings* /RJPA- 3(7), July-2013.

Definition 2.4: A nonempty subset T of S is called a left (respectively right) ideal of S if T is a subsemigroup of (S, +) and $x\alpha a \in T$ (respectively $a\alpha x \in T$) for all $a \in T, x \in S$ and for all $\alpha \in \Gamma$.

Definition 2.5: If a nonempty subset T is both left and right ideal of S, then T is known as an ideal of S.

For proofs of following result see [5].

Result 2.6: For each nonempty subset X of S following statements hold.
(i) SΓX is a left ideal.
(ii) XΓS is a right ideal.
(iii) SΓXΓS is an ideal of S.

Result 2.7: For a ∈ S following statements hold.
(i) SΓa is a left ideal.
(ii) aΓS is a right ideal.
(iii) SΓaΓS is an ideal of S.

Now we give a definition of a bi-ideal.

Definition 2.8 [6]: A nonempty subset B of S is a bi-ideal of S if B is a sub Γ -semiring of S and $B\Gamma S\Gamma B \subseteq B$.

Example: Let *N* be the set of natural numbers and let $\Gamma = 2N$. Then *N* and Γ both are additive commutative semigroup. An image of a mapping $N \times \Gamma \times N \longrightarrow N$ is defined by $a\alpha b =$ product of *a*, α , *b*; for all $a, b \in S$ and $\alpha \in \Gamma$. Then *S* forms a Γ -semiring. B = 4N is a bi-ideal of *N*.

Example: Consider a Γ -semiring $S = M_{2\chi 2}(N_0)$, where N_0 denotes the set of natural numbers with zero and $\Gamma = S$. Define $A\alpha B$ = usual matrix product of A, α and B; for all A, α , $B \in S$. Then

 $Q = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in N_0 \right\}$ is a bi-ideal of a Γ -semiring *S*.

3. BI-SIMPLE Г-SEMIRING

We begin with defining a bi-simple Γ -semiring and a 0-bisimple Γ -semiring.

Definition 3.1: A Γ -semiring S without zero is a bi-simple Γ -semiring if S has no bi-ideal other than S itself.

Definition 3.2: If Γ -semiring S contains a zero element, then S is a 0-bi-simple Γ -semiring if S and $\{0\}$ are the only biideals of S.

Next theorem gives a characterization of a bi-simple Γ -semiring.

Theorem 3. 3: If S is a Γ -semiring without zero, then S is a bi-simple Γ -semiring if and only if $a\Gamma S\Gamma a = a$, for all $a \in S$.

Proof: Suppose that *S* is a bi-simple Γ -semiring. For any $a \in S$, $a\Gamma S\Gamma a$ is a sub Γ -semiring of *S*. By Result 2.7(ii) $a\Gamma S$ is a right ideal of *S* and hence $(a\Gamma S\Gamma a)\Gamma S\Gamma (a\Gamma S\Gamma a) = (a\Gamma S)\Gamma (a\Gamma S\Gamma a\Gamma S)\Gamma a \subseteq (a\Gamma S)\Gamma (a\Gamma S)\Gamma a$. Therefore $(a\Gamma S\Gamma a)\Gamma S\Gamma (a\Gamma S\Gamma a) \subseteq ((a\Gamma S)\Gamma (a\Gamma S))\Gamma a \subseteq a\Gamma S\Gamma a$, since $a\Gamma S$ is a right ideal of *S*. Thus $a\Gamma S\Gamma a$ is a bi-ideal of *S* by definition. $a\Gamma S\Gamma a \subseteq S$ and *S* is bi-simple Γ -semiring *S* imply $a\Gamma S\Gamma a = S$. Conversely, suppose that $a\Gamma S\Gamma a = S$. Let *B* be a bi-ideal of *S*. For any $b \in B$, $b\Gamma S\Gamma b = S$ by assumption. $S = b\Gamma S\Gamma b \subseteq B\Gamma S\Gamma B \subseteq B$ as $b \in B$ and *B* is a bi-ideal of *S*. Therefore *B* = *S*. Hence *S* is a bi-simple Γ semiring.

Theorem 3.4: If S is a Γ -semiring without zero, then S is a bi-simple Γ -semiring if and only if $(a)_b = S$, for $a \in S$.

Proof: Let S be a bi-simple Γ -semiring. For any $a \in S$, we have $(a)_b \subseteq S$. But S is bi-simple gives $(a)_b = S$. Conversely, let B be a bi-ideal of S. Then for any $a \in B$, $(a)_b = S$ by assumption. $S = (a)_b \subseteq B$. Therefore we have B = S as $B \subseteq S$ and $S \subseteq B$.

Proof of following theorem is follows from above two theorems.

Theorem 3. 5: If S is a Γ -semiring with zero, then following statements are equivalent

(1) S is a 0-bi-simple Γ -semiring

(2) $a\Gamma S\Gamma a = S, for a \in S \setminus \{0\}$

(3) $(a)_b = S$, for $a \in S \setminus \{0\}$.

© 2013, RJPA. All Rights Reserved

4. MINIMAL BI-IDEALS:

Definition 4.1: Let *S* be a Γ -semiring. A bi-ideal *B* of *S* said to be a minimal bi-ideal of *S* if *B* does not contain any other proper bi-ideal of *S*.

Definition 4.2: Let *S* be a Γ -semiring with zero. A bi-ideal *B* of *S* is said to be 0-minimal bi-ideal if *B* does not contain any other proper non zero bi-ideal of *S*.

Theorem 4.3: Let S be a Γ -semiring, B be a bi-ideal and T be a sub- Γ -semiring of S. If T is a bi-simple with $T \cap B \neq \emptyset$, then $T \subseteq B$.

Proof: Let *T* be a bi-simple sub Γ -semiring with $T \cap B \neq \emptyset$. Then $a \in T \cap B$. $a \in T$, $a\Gamma T\Gamma a$ is a bi-ideal of *T* and *T* is a bi-simple imply $a\Gamma T\Gamma a = T$, by Theorem 3.3. Therefore $T = a\Gamma T\Gamma a \subseteq B\Gamma T\Gamma B \subseteq B\Gamma S\Gamma B \subseteq B$, since *B* is a bi-ideal. Thus we get $T \subseteq B$.

Theorem 4.4: Let *S* be a Γ -semiring with zero, *B* be a bi-ideal and *T* be a sub- Γ -semiring of *S*. If *T* is a 0-bi-simple with $T \setminus \{0\} \cap B \neq \emptyset$, then $T \subseteq B$.

Proof: Let *T* be a bi-simple sub Γ -semiring with $T \setminus \{0\} \cap B \neq \emptyset$. Then $a \in T \setminus \{0\} \cap B$. $a \in T$ and *T* is a 0-quasi-simple imply $a\Gamma T\Gamma a = T$ by Theorem 3.5. Therefore $T = a\Gamma T\Gamma a \subseteq B\Gamma T\Gamma B \subseteq B\Gamma S\Gamma B \subseteq B$, since *B* is a bi-ideal. Thus we have $T \subseteq Q$.

Properties of a minimal bi-ideal of a Γ -semiring *S* are proved in the following theorems.

Theorem 4.5: Let *R* be a minimal right ideal and *L* be a minimal left ideal of a Γ -semiring *S* without zero, then $R\Gamma L$ is a minimal bi-ideal of *S*.

Proof: Let *R* be a minimal right and *L* be a minimal left ideal of *S*. Let $B = R\Gamma L$. Then $R\Gamma L$ is a bi-ideal of *S*. Let *A* be a bi-ideal of *S* such that $A \subseteq B$. By Result 2.6 $S\Gamma A$ is a left ideal and $A\Gamma S$ is a right ideal of *S*. We have $\Gamma A \subseteq S\Gamma B = S\Gamma R\Gamma L$, since $A \subseteq B = R\Gamma L$ and $S\Gamma R\Gamma L \subseteq L$ as *L* is a left ideal. Therefore we get $S\Gamma A \subseteq L$. Similarly we can show that $A\Gamma S \subseteq R$. $S\Gamma A \subseteq L$ and *L* is a minimal left ideal of *S* gives $S\Gamma A = L$. $A\Gamma S \subseteq R$ and *R* is a minimal right ideal of *S* imply $A\Gamma S = R$. Therefore $B = R\Gamma L = A\Gamma S\Gamma S\Gamma A \subseteq A\Gamma S\Gamma A \subseteq A$ as *A* is a bi-ideal. Hence $B \subseteq A$. Thus we get B = A, since $A \subseteq B$. This shows *B* is a minimal bi-ideal of *S*.

Theorem 4.6: Let B be a bi-ideal of a Γ -semiring S without zero. Then B itself is a bi-simple Γ -semiring if and only if B is a minimal bi-ideal of S.

Proof: As *B* is a bi-ideal of *S*, *B* is a sub- Γ -semiring of *S* by definition. Suppose *B* is a bi-simple Γ -semiring. Let *A* be a bi-ideal of *S* such that $A \subseteq B$. Hence $A \Gamma B \Gamma A \subseteq A \Gamma S \Gamma A \subseteq A$, since *A* is a bi-ideal of *S*. Therefore *A* is a bi-ideal of *B*. $A \subseteq B$, *A* is a bi-ideal of *B* and *B* is a bi-simple Γ -semiring imply A = B. Therefore *B* is a minimal bi-ideal of *S*.

Conversely, let *B* be a minimal bi-ideal of *S*. For any $a \in B$, $a\Gamma S\Gamma a$ is a bi-ideal of *S*. $a\Gamma S\Gamma a \subseteq B\Gamma S\Gamma B \subseteq B$. As *B* is a minimal bi-ideal of *S*, $a\Gamma S\Gamma a = B$. This shows *B* itself a bi-simple Γ -semiring by Theorem 3.3.

Theorem 4.7: Let B be a bi-ideal of Γ -semiring S with zero. If B is a 0-bi-simple Γ -semiring, then B is a 0-minimal biideal of S.

Proof: As *B* is a bi-ideal of *S*, *B* is a sub Γ -semiring of *S* by definition. Suppose *B* is a 0-bi-simple Γ -semiring. Let $\{0\} \neq A$ be a bi-ideal of *S* such that $A \subseteq B$.

Hence $A \Gamma B \Gamma A \subseteq A \Gamma S \Gamma A \subseteq A$, since A is a bi-ideal of S. Therefore A is a bi-ideal of B. $A \subseteq B$, A is a bi-ideal of B and B is a 0-bi-simple Γ -semiring imply A = B.

Therefore *B* is a 0-minimal bi-ideal of *S*.

Theorem 4.8: Let B be a bi-ideal of a Γ -semiring S with zero. If B is a 0-minimal bi-ideal of S then either $B\Gamma B \neq \{0\}$ or B is a 0-bi-simple Γ -semiring.

Proof: Let *B* be a 0-minimal bi-ideal of *S*. For any $0 \neq a \in B$, $a\Gamma S\Gamma a$ is a bi-ideal of *S*. $a\Gamma S\Gamma a \subseteq B\Gamma S\Gamma B \subseteq B$. As *B* is a 0-minimal bi-ideal of *S* and $a\Gamma S\Gamma a \neq \{0\}$, $a\Gamma S\Gamma a = B$. This shows *B* itself a 0-bi-simple Γ -semiring by Theorem 3.5.

REFERENCES

- Dutta T.K., Sardar S.K., Semi-prime ideals and irreducible ideals of Γ-semiring. Novi Sad Jour. Math., 30(1) (2000), 97-108.
- [2] Good R.A., Hughes D.R., Associated groups for a semigroup. Bull. Amer. Math. Soc., 58 (1952), 624-625.
- [3] Iampan Aiyared, Note on Bi-ideals in Γ-semigroups, International Journal of Algebra, 3(4), (2009), 181-188.
- [4] Iseki K., Ideal Theory of semiring. Proc. Japan Acad. 32 (1956), 554-559.
- [5] Iseki K., Ideals in semirings. Proc. Japan Acad. 34 (1958), 29-31.
- [6] Jagatap R.D., Pawar Y.S., Quasi-ideals in Regular Γ-semirings, Bull. Kerala Math. Asso., 6(2), (2010), 51-61.
- [7] Krgovic Dragica, On 0-Minimal Bi-ideals in semigroups, Publications De L'Institut Mathematique, 27(41), (1980), 135-137.
- [8] Lajos S., Generalized ideals in semigroups. Acta. Sci. Math. Szeged. 22(1961), 217-222.
- [9] Lajos S., Szasz F., On the bi-ideals in Associative ring. Proc. Japan Acad., 46 (1970), 505-507.
- [10] Lajos S., Szasz F., On the bi-ideals in Semigroups, Proc. Japan Acad., 45(1969), 710-712.
- [11] Lajos S., Szasz F., On the bi-ideals in Semigroups II. Proc. Japan Acad., 47 (1971), 837-839.
- [12] Rao M. M. K., Γ-semirings 1.Southeast Asian Bull. of Math., 19(1995), 49-54.
- [13] Shabir M., Ali A., Batool S., A note on quasi-ideals in semirings. Southeast Asian Bull. of Math., 27 (2004), 923-928.

Source of support: Nil, Conflict of interest: None Declared