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ABSTRACT 
In this paper, we study Smarandache (S) specialdefinite rings and Smarandache (S)specialdefinite fields. We 
givecharacterizations of a S-special definite ringanda S-special definite field and determine some properties of each of 
them and obtain some result. 
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INTRODUCTION 
 
Smarandachealgebraic structures introduced by Raul Padilla and Florentine Smarandache[1] and [2]. S-special definite 
algebraic structures suchas S -  special definite groups,S - special definite rings and S -  special definite fields definedby 
W.B.Vasantha Kandasamy[3]. These new structures are defined as those strong algebraic structures which contain 
weak algebraic structures. For instance, the existence of a semigroup in a group or a ring in a field or a semiring in a 
ring.In this work westudy S-special definite rings and S - special definite fields. This paper consists of threesections.In 
section one we state basic definitions on Smarandache algebraic structures that we need in our work. In sectiontwowe 
givea characterization of S - special definite rings. It is shown that every S - special definite ring has characteristic zero 
and that every ring of characteristic zero with identity is a S - special definite ring.Acharacterization of a S - special 
definite ringis given usingits S - special definite substructures. A condition is given under which every non trivial 
subring of a S - special definite ring is a S - special definite ring.In section three characterization of S-special definite 
fields is given. It is shown that If F is a S-special definite field, then F containsan infinite countable numberof subrings 
which are not field.We show that a finite field can not beS -special definite field. Moreoverwe study S-definite special 
fields and we show that a field F is a S-definite special fieldif and only if F is a field of characteristic zero. 
 
1. BACKGROUND  

 
In thissection we state basic definitions on S-algebraic structures thatwe needin our work. 
 
Theorem 1.1[4, P.50]: A finite semigroup is a group if and only if it is satisfies the cancellation law. 
 
Theorem 1.2 [5, P.172]: If R is a finiteringwith more than one element withno divisor of zero, then R is a field. 
 
Theorem 1.3 [4,P.249]: Let R be a ring with more than one element such that x R = R, for everynon zero element x∈R.  
Then R is a division ring. 
 
Definition 1.4: [6] (S, +, *) is called a semiring, if it satisfies the following conditions 
1. (S, +) is a commutative semigroup with identity. 
2. (S, * ) is a semigroup. 
3. (a + b) * c = a* c + b* c and c* (a + b) = c * a + c * b, for all a, b, c in S. 
 
Definition 1.5: [3, P.61] A ring R is said to be S -special definite ring if there is a non empty subset S of R such that S 
is just a semiring (S is a semiring under the induced operations of R, but not a ring). If H itself is a S-special definite 
ring, then H is called a S-special definite subring of R.  
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Definition 1.6 [7, P.38]: A S - ring R is a ring such that a proper subset F of R is a field with respect to the induced 
operations of R.  
 
Definition 1.7 [3, P.50]: A field F is said to be S -  special definite field if there is anon empty subset R of F such that 
R is just a ring (R is a ring under the induced  operation of F but not a field).  If H itself is a S-special definite field, 
then we call H a S- special definite subfield of F. If F has no proper S-special definite subfield then we call F to be a S - 
special definite prime field. 
 
Definition1.8 [6]: Let S be a non empty set. Then S is said to be a semifield, if it satisfies thefollowing conditions 
1. S is a commutative semiring with 1. 
2. S is a strict semiring, that is if a + b = 0, then a= b = 0, for all a, b in S. 
3. If a b = 0, then either a = 0 or b = 0, for all a, b in S. 
 
Definition 1.9 [3, P.75]: Let F be a field and A a proper subset of F which is a semifield under the operations of F. 
Then we say F is a S - definite special field. 
 
2. S -SPECIAL DEFINITE RINGS 
 
In this section we givea characterization of a S - special definite ring. It is shown that every S-special definite ring has 
characteristic zero and that every ring of characteristic zero with identity is a S- special definite ring.A characterization 
of a S - special definite ring is given using its S - special definite substructures. We give a condition under which every 
non trivial subring of a S - special definitering is S-special definite subring.A necessary and sufficient condition is 
given for group rings, polynomial rings and ring of matrices to be S - special definite rings.  
 
Theorem 2.1: Let R be a ring. Then R is a S-special definite ring if and only ifthere exists a∈R such that na≠0 , for all 
n∈ ℤ +. 
 
Proof: Suppose R is a S-special definite ring and let S ⊂ R be just a semiring. Suppose for each a∈S thereexists n∈ ℤ+ 
such thatn a=0. But (n-1) a∈ S so, -a= (n-1) a∈S, which shows that S is a ring, which is acontradiction with assumption 
S is just a semiring.Thenthere exists a∈S such that na≠0, for all n∈ ℤ +. (R, +) containsan element of infinite order. 
 
Conversely suppose that there exists a∈ R such that na≠0, for all n∈ ℤ+. 
 
Let S={na+ba: n ∈ℤ+ U{0}and b∈R }. Clearly S is a semiring.  
 
If S is just a semiring, then the proofis complete, otherwise S is a ring and every element of S has an additive inverse in 
S. Take any such element say 2a, then thereexists an element na+ba∈S such that 2a+ n a+ba=0, thus (2 + n) a+ba=0, 
thus 
 
 –b a = (2 + n) a and –b≠0                                                                                                                                                 (1)                    
 
Let S*= {b∈R; ba=na for some n∈ℤ+} U {0}. Then –b∈S*. This means that S*≠ ∅. We claim that S* is just a semiring. 
If b1,b2  are two non zero elements in S*, then b1 a=n1 a,b2 a=n2 a, for some n1, n2∈ℤ+, thus  (b1+b2) a=b1 a +b2 a= n1 a+ 
n2 a= ( n1 + n2) a, and (b1  b2) a=b1 (b2  a)=b1 n2 a= n2(b1 a)=(n1 n2) a, thus b1 +b2∈ S* and b1 b2∈ S*. 
 
If b1=0 or b2=0, then b1 b2 =0∈ S* and (b1 +b2= b1∈ S* or b1 +b2= b2∈ S*). 
 
Then S* is a semiring. –b∈S* and –b has no additive inverse in S, since  otherwise if there exists an element b1∈ S* such 
that –b +b1=0, then since b1∈S* and b1≠0 by ( if b1=0, then –b =0, which is a contradiction), then b1 a=n1 a, for some  
 
n1∈ ℤ +                                                                                                                                                                               (2)           
          
0=(–b+b1) a= –ba+b1a  from (1) and (2) we get, 0=(2 + n) a + n1 a =(2 + n+ n1) a, but na≠0, for all n∈ ℤ+, then  
2 + n+ n1≤ 0 which is a contradiction , with assumption (n1∈ ℤ+ and n ∈ℤ+ U{0}), therefore–b has no additive inverse 
in S, this means that (S*, +,.) is just a semiring, consequently R is a S-specialdefinite ring.  
 
Examples 2.2: 
1. For an infinite set X the ring (P(X),∆,∩) is not a S-specialdefinite ring. 
2. (Zp∞ , +,.) with trivial multiplication is an infinite ring of characteristic zero, but it is not a S-special definite ring, 

since for each a∈Zp∞ , there exists n∈ℤ+such that n.a=0. 
3. (ℤ,+,.)  is a S-special definite ring , since it contains  (ℤ+,+,.), which is a semiring. 
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Corollary 2.3: Every S-special definite ring is of characteristic zero. 
 
Proof: The proof is a direct consequence of Theorem 2.1.  From Corollary 2.3, we deduce that a finite ring can not be a 
S-special definite ring. 
 
The converse of  Corollary2.3,  is not true in general asthe infinite direct sum ⊕Ζp, p runs over all prime numbersis a 
ring of characteristiczero, but it is not a S-special definite ring. 
 
Proposition 2.4: Let R is a ring with identity element 1 of characteristic zero.Then R is a S-special definite ring. 
 
Proof: LetS={ n∙1; n ∈ℤ+}∪{0}. Clearly S is a semiring. For each n∈ℤ+, n1 has no additive inverse in S, since if n 
1+m 1=0, where m ∈ℤ+∪{0}, then  (n+m)1 =0, consequently (n+m)a=(n+m)(1a) = ((n+m)1)a =0, for all a∈ R, which 
is a contradiction with R is of characteristic zero. Then S is just a semiring, hence R is a S-special definite ring. The 
converse of Proposition 2.4, is not true in general as (2ℤ, +,.) is a S-special definite ring, without identity. 
 
In the following proposition a necessary and sufficient conditionis given under which the direct product of two rings is 
a S-special definite ring. 
 
Proposition 2.5: Let R1,, R2 are two rings . Then R1× R2 is a S-special definite ring if andonly if at least one of R1 or R2 
is S-special definite ring.  
 
Proof: Suppose R1 is a S-special definite ring. Then there exists S⊂ R such that (S, +,.) is just a semiring. Hence  
S× {0} is just asemiring of R1× R2.So, R1× R2 is S-special definite ring. The proof is similar when R2 is S-special 
definite ring. 
 
Conversely suppose that  R1× R2 is S-special definite ring. Then by Theorem 2.1, there exists (a,b) ∈ R1× R2 such that 
(a,b) is of infinite order with respect to addition, thus a ∈ R1 is of infinite order with respect to addition or b∈ R2  is of 
infinite  order   with   respect  to   addition,   since  otherwise  (there  exist  n, m ∈ ℤ+ such that n a=0   and  mb=0,  then  
nm (a,b) = (m(na), n(mb)) =(0, 0),which is a contradiction), then by  Theorem 2.1,  R1 is S-special definite ring or R2 is 
S-special definite ring. More generally we have  
 
Corollary 2.6: If R1, R2 ,…, Rn are rings, then R1× R2 × …×Rn is a S-special definite ringif and only if  at least one of 
R1, R2 ,…, Rn is a S-special definite ring.  
 
Proposition 2.7: Every ring can be imbedded in a S-special definite ring. 
 
Proof: Let R be a ring. Since (ℤ, +,.) is a S-special definite ring, thenby Proposition 2.5, R× ℤ is a S-special definite 
ring.  But R × {0} is subring of R× ℤ which is isomorphic to R. Then R is imbedded in R× ℤ.  
 
Theorem 2.8: Let RG bethe group ring of the group G over the ring R. Then RG is a S-special definite ring if and only 
if R is a S-special definite ring. 
 
Proof: Suppose that R is a S-special definite ring, thenby Theorem 2.1 there exists a∈ R such that na≠0 , for all n∈ ℤ+. 
Thenn (aeG) = (na) eG≠0RG, for all n∈ ℤ+, by Theorem2.1, RG is a S-special definite ring. 
 
Conversely suppose that RG is a S-special definite ring. ByTheorem 2.1, there exists a0+a1g1+ a2g2+…+angn∈ RG, 
where a0,…,an∈R and g1,…,gn∈G such that n(a0+a1g1+…+angn ) ≠ 0, for all n∈ ℤ+.Suppose that every element of (R,+) 
is of finite order, soeveryelement ai∈R there exists mi∈ ℤ+ such that mi ai=0, so m0m1…mn(a0+a1g1+a2g2+…+angn) = 0 
which is a contradiction, so there exists a∈R such that n.a≠0, for all n∈ ℤ+, then R is a S-special definite ring. 
 
Theorem 2.9: Let R be a ring. Then R[x] is a S-special definite ring if and only if R is a S-special definite ring. 
 
Proof: Suppose that R is a S-special definite ring, thus there exists just a semiring S of R such that S⊂ R⊂ R[x], so 
R[x] is a S-special definite ring.The converse is similar to Theorem 2.8. 
 
Theorem 2.10: Let R be a ring. Then Mn(R) is a S-special definite ring if and only if R is a S-special definite ring. 
 
Proof: Suppose that R is a S-special definite ring, thenby Theorem 2.1 there exists a∈R such that na≠0 , for all n∈ ℤ+, 

then  𝑛𝑛 �
𝑎𝑎 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

� ≠�
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

� for all n∈ ℤ+, so by Theorem 2.1, Mn(R) is a S-special definite ring. 
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Conversely suppose that Mn(R) is a S-special definite ring. By Theorem 2.1, there exists �
a11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 ⋯ 𝑎𝑎𝑛𝑛𝑛𝑛

�∈Mn(R) 

suchthat𝑛𝑛 �
a11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 ⋯ 𝑎𝑎𝑛𝑛𝑛𝑛

�≠�
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

� for all n∈ ℤ+. 

 
Suppose that every element of (R,+) is of finite order, so for everyaij∈R there exist mij∈ ℤ+such thatmij aij =0. Let t= 

m11m12… m1nm21m22 … mnn, so t �
a11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 ⋯ 𝑎𝑎𝑛𝑛𝑛𝑛

� = �
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

� , whichis a contradiction, so there exists a∈R such 

that n.a≠0 , for all n∈ ℤ+, then R is a S-special definite ring. It is clear that if R has a subring H which is a S-special 
definite ring, then R is also S-special definite ring but the converse is not true in general as (ℤ×Ζp,+,.) is a S-special 
definite ring, since it contains the semiring ((ℤ+∪{0})×Ζp,+,.), but the subring ({0}×Ζp,+,.) of (ℤ×Ζp,+,.) is notaS-
special definite ring of R. Recall that if R be a S-special definite ring such that every non trivial subring of R is a S-
special definite subring, then R is called S - strong special definite ring [3, p.66]. 
 
Proposition 2.11: Let R be a S-special definite ring which has no zero divisors. Then R is a S - strong  special definite 
ring. 
 
Proof: Let J be any non zero subring of R. Since R is a S-special definite ring, then there exists a∈ R such that n.a≠0 , 
for all n∈ ℤ +. If x is a non zero element of  J, then n.x ≠0, for all n∈ ℤ+, since if n.x=0, for some n∈ ℤ+, then (n.x) a=0, 
then x. na=0. But x≠0 and R has no zero divisor, then na=0, which is a contradiction with na≠0 , for all n∈ ℤ+. Then x∈J 
and n.(x)≠0, for all n∈ ℤ+, then by Theorem 2.1, J is a S-special definitesubring. Then every non trivial subring of R is 
a S-special definite subring. Then R is a S -strong special definite ring. The converse of  Proposition 2.11,  is not true in 
general as ℤ × ℤ  is a ring which contains zero divisors, but every non zero subring of ℤ × ℤ is a S-special definite 
subring, that isℤ × ℤ is a S -  strong special definite ring. 
 
In the following  theorem a necessary and sufficient conditionisgiven under which a S-special definite ring is a S- 
strong  special definite ring. 
 
Theorem 2.12: Let R be a S-special definite ring, Then (R,+)  is a torsion free group if and only if R is a S- strong 
special definite ring. 
 
Proof: Suppose that every non trivial subring of R is a S-special definite subring.Let a be a non zero element in R. If 
aR≠{0}, then by assumption aR is a S-special definite subring of R, by Theorem 2.1, for some b∈R, ab is an element of 
infinite order with respect to addition. This implies that a is an element of infinite order with addition, sinceif ma=0, for 
some m∈ ℤ+, then m(ab)=(ma)b=0b=0, which is acontradiction. If aR= {0}, then H= {ma; m∈ ℤ) is a S-special definite 
ring, so byTheorem 2.1, for some k∈ ℤ+, ka is an element of infiniteorder with respect to addition, consequently a is an 
element ofinfinite order with respect to addition since if ma=0, for somem∈ ℤ +, then m(ka)=k(ma) =k0=0, which is 
acontradiction with ka is anelement of infinite order with addition. Conversely suppose that (R,+) is a torsion free 
group. Then everynon trivial subring containsan element of infinite order with respect to addition. By Theorem 2.1, 
every non trivial subring is a S-special definite subring. So R is a S- strong special definite ring. 
 
The following example illustrates Theorem 2.12, 
 
Examples 2.13: 
1. ℤ × ℤ  is a S-special definite ring and (ℤ × ℤ, +)  is a torsion free group, then by Theorem 2.12, ℤ× ℤ  is a S-  strong 

special definite ring. 
2. (ℤ×Ζp,+,.) is a S-special definite ring and (ℤ ×Ζp, +)  is not torsion free group, then by Theorem 2.12, (ℤ×Ζp,+,.) is 

not a S -  strong special definite ring. 
 
We would like to mention that the property  of  being an S -  ring and an S-special definite ring, are independent asit is 
shown in the following example. 
 
Examples2.14: 
(1) The infinite direct sum ⊕Ζp of the rings Ζp, p runs over all prime numbers, is a S-ring but is not a S-special 

definite ring. 
(2) (ℤ,+,.) is a S-special definite ring but is not a S-ring. 
 
Theorem 2.15: Let R be just a non zero subring of a field F, Then R is a S-special definite ring if and only if F is a 
field of characteristic zero. 
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Proof: Suppose that F is a field of characteristic zero and let 0≠ x ∈R. Then n.x ≠0 , for all n∈ ℤ+, since if n.x=0, for 
some n∈ ℤ+, then (n.x) a=0, for all a ∈F then x. na=0, but x≠0 and F has no zero divisor, thenn.a=0, for all a ∈F which 
is a contradiction with F is a field of characteristic zero.Thus x∈R and n.(x)≠0 , for all n∈ ℤ+, thenR isa S-special 
definitering.  
 
Conversely suppose that R is a S-special definite ring. ThenbyTheorem 2.1, there exists a∈R⊂F such that na≠0 , for all 
n∈ ℤ+. Hence F is a field of characteristic zero. 
 
The following example illustrates Theorem 2.15, 
 
Examples 2.16: 
1-(ℤ,+,.)is just subring of the field (ℚ,+,.) whose characteristicis zero, which is S-specialdefinite ring. 
2- (ZP[x], +, .) is just subring of the field ZP(x) whose characteristic is p, which is not S-special definite ring.  
 
3.S - SPECIAL DEFINITEFIELDS 
 
In this section we study S -special definite fields. We show that a finite field can not be S - Special definite field. We 
give many characterizations of S - special definite fields. It is shown that every field of characteristic zero is a S- 
special definite field. Moreoverwe study S - special definite substructures such as S - specialdefinite subfields and S- 
special definite prime fields and westudy also S - definitespecial fields. It is shown that a field F is a S- definite special 
fieldif and only if F is of characteristic zero. 
 
Proposition 3.1: A finite field can not be S-special definite field. 
 
Proof: Let F be a finite field and R beasubring of F. Then R-{0}is closed under multiplication. Then (R-{0},.) is a 
finite semigroup, whichsatisfies cancelation laws. Hence by Theorem 1.1, (R-{0}, . ) is a group, thus(R, +, . ) is a field, 
which means that F is not a  S-special definite field.  
 
Theorem 3.2: Every field of characteristic zero is a S-special definite field. 
 
Proof: Let F be a field of characteristic zero. Then F contains a subring isomorphic to ℤ.Hence F is a S-special 
definitefield. 
 
Now we give a necessary and sufficient condition under whicha field of positive characteristic is S-special definite 
field. 
 
Theorem 3.3: Let F be a field of characteristic p. Then F is a  S-special definite fieldif and only if F is not an algebraic 
extension of Ζp . 
 
Proof: Suppose that F is not an algebraic extension over Ζp . Then there exists x∈F such that x is transcendental over 
Ζp. Let R={a0+ a1x+…+ ak xk ; ai∈Ζp and k∈ℤ+}. Then R is a ring. 1.x∈ R which has no inverse in R, since if  1.x  has 
an inversein R, then there exists a0+ a1x+a2x2+…+ anxn∈R such that(1.x )( a0+ a1x+…+ an xn)=1. Then we get -1+ a0x+ 
…+ an xn+1=0, which is a contradiction with x is transcendental over Ζp . HenceR isjust a ring and F is S-special definite 
field. 
 
Conversely suppose that F is  S-special definite field which is analgebraic extension over Ζp. If  R is any subring of F 
and a is a non zero element of  R, thena is  algebraic over Ζp, then Ζp(a) is a finite field .Suppose  Ζp(a) contains n 
elements, then (Ζp(a)-{0}, .)  is a cyclic group oforder n-1, then an-1=1, then a-1= an-2∈ R, then every non zero element 
of R has inverse in R. Therefore R is a field, then every subring of F is a subfield, so F cannot be S-special definite 
field, which is a contradiction with assumption F is S-special definite field. ThenF is not analgebraicextension over Ζp .  
 
Examples3.4: 
1. Ζp(x) is a field of characteristic p which is a S-special definite field sinceit contains Ζp[x] , which is just a ring.  
2. The algebraic closure of Ζp is an algebraic extension of Ζp , then it is not a S-special definite field. 
3. (ℝ,+,.)  is S-special definite field, since it contains  (ℤ,+,.). 
4. No finite field is a S-special definite field. 
 
The following theorem gives another characterization of S-special definite fields. 
 
Theorem 3.5: Let F be a field of characteristic p. Then  F is a S-special definite fieldif and only if  (F - {0},.) is not a 
torsion group. 
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Proof: Suppose that F is a S-special definite field. Then F has a subringR which is not a subfield. So (R-{0},.)  is just a 
semigroup, then there exists an element a in R-{0} such that a has no inversein R-{0}, if a is of finite order with respect 
to multiplication, thus thereexists n∈ ℤ+ such that an = 1, so a an-1= 1, thus a-1= an-1∈ R-{0},which is a contradiction 
with a has no inversein R-{0}.This means that (R-{0}, . ) contains an element of infinite order. Hence (F -{0},. )  is not  
a torsion group. 
 
Conversely suppose that (F -{0}, . ) is not a torsion group, then there exist a∈F such that a is an element of infinite 
order with respect to multiplication. We claim that a is transcendental over Ζp . If a is algebraic over Ζp, then Ζp(a) is a 
finite fieldof order n. Then (Ζp(a)-{0}, .) is a group of order n-1, then 1=an-1 which is a contradiction. Then F is  
notalgebraic extension over Ζp , then F is S-special definitefieldby Theorem 3.3. 
 
Theorem 3.6: If F is a field and R is just a subring of F, then R is an infinite set containing an element of infinite order 
with respect to multiplication. 
 
Proof: Let F be a field and R be a subring of F which is not a field. If R is a finite set, then R is a finite ring which 
satisfies cancelation laws. Then by Theorem 1.2, R is a field, which is a contradiction with assumption R is not a 
field.So R isan infinite set.  
 
Now suppose that every element of R is of finite order with respect to multiplication. Since R is just a ring, then there 
exists an element a≠0 in R such that a has no inverse in R, but a is of finite orderwith   respect to multiplication, hence 
there exists n∈ ℤ+ such that an = 1, so a an-1= 1, thus a-1= an-1∈R, which is a contradiction. This means that R contains 
an element of infinite order with respect to multiplication.  
 
Proposition 3.7: Every field can be imbedded in a S-special definite field. 
 
Proof: Let F be a field. Then F(x) ={f(x)/g(x); f(x), g(x)∈F[x] and g(x) ≠ 0}  is a S-special definite field since it 
contains the ring F[x]. So, F is imbedded in F(x) , which is a S-specialdefinite field. 
 
Theorem 3.8: Let F be a field. If F is a S-special definite field, then F containsan infinite countable numberof subrings 
which are not field. 
 
Proof: Let F be a  S-special definite field. Then there exists  R ⊂ F such that R is  just a  ring. Hence there exists x ∈ R 
such that xR ⊂ R, since (if xR = R for every non zero element x∈ R. Then by Theorem 1.3,  R is division ring , but R is 
a commutative ring, so R is a field which is acontradiction with R is  just aring ). If  xR contains the identity 1 (identity 
of a ring equal the identity of extension field). i.e. 1∈xR, then there exists xl ∈ R such that xxl= 1, so x-1 = xl∈ R, thus 
xR =R, since (If y∈ R,  then y = x ( x-1y)∈ x R,  thus R ⊆ xR    but xR ⊆ R, thus x R =R) which is a contradiction with  
x R⊂R, then xR does not contain the identity element. Hence x R is just a ring, which is an infinite set (If x R is afinite, 
therefore xR is a finite ringand has no zero divisors, then by Theorem 1.2, x R is a field).Then for every justa ring 
Rthereexists x ∈ R such that R1= x R is justa ring which is an infinite set and R1⊂ R. By the same mannerone can show 
the existence of asubring R2⊂ R1which is not a field, then F contains an infinitecountable number of subringswhich 
arenot field.  
 
Theorem 3.9: Let  F be a S-special definite field. Then every subfield of F is a S-special definite subfield if and only if 
F is a field of characteristic zero. 
 
Proof: Suppose that F is a field of characteristic zero and K is a subfield of  F. Then K is a field of characteristic zero 
and by Theorem 3, 2 K is a S-special definite subfield. Therefore everysubfield of F is a S-special definite subfield. 
 
Conversely, suppose that every subfield of F is S-special definite subfield and F is a field of characteristic p, then F 
containsa subfield (Ζp, +, . ) but (Ζp, +,  . ) is not S-special definite field whichis a contradiction with assumption that 
every subfield of F is a S-specialdefinite subfield, then F is a field of characteristic zero. It is clear that the only S-
special definite prime field ofcharacteristic zero is the field of rational numbers but it has no S-special definiteprime 
field of prime characteristic as it is shown in thefollowing theorem. 
 
Theorem 3.10: There is no S-special definite prime field of characteristic p. 
 
Proof: Let F be a S-special definite field of characteristic p. ByTheorem 3.3, F is notan algebraic extension over Ζp that 
is there exists x∈F such thatxis transcendental over Ζp, then x∉Ζp(x2), since (if x∈Ζp(x2), then x= ( a0+ a2x2+…+ a2n 
x2n) /( b0+ b2x2+…+ b2n x2r)  where b2i≠ 0 for some i, then( b0x+ b2x3+…+ b2n x2n+1)- ( a0+ a2x2+…+ a2r x2r)=0, hencex 
is algebraic over Ζp which is a contradiction), then  Ζp(x2) ⊂ F. Since x is transcendental over Ζp, then x2∈Ζp(x2) is a 
transcendental over Ζp, thus by Theorem 3.3, Ζp(x2)⊂ F is a S-special definite subfield of F, hence F can not be S-
special definite prime field. Then there is noS-special definite prime field of characteristic p. 
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Theorem 3.11: A field of characteristic zero is a S-definite special field. 
 
Proof : Let F be a field of characteristic zero. Let S={ n∙1; n ∈ℤ+}U{0}. Clearly S is a commutative semiring. For n∙1, 
m 1∈ S, if n 1+m 1=0 where n,m ∈ℤ+, then (n +m) 1=0, implies (n +m) =0 since F is a  field of characteristic zero, so 
n=m=0, if n 1m 1=0 where n,m ∈ℤ+, then  (n m) 1=0, then  (n m) =0, sinceF is a  field of characteristic zero, so n=m=0, 
thus S is a semifield, consequently F is a S-definite  special field.  
 
Theorem 3.12: A field of characteristic p is not a S-definite special field. 
 
Proof : Suppose  F is a S-definite special field of characteristic p and let S ⊂F be a semifield of F. Then for every 
element 0≠ a∈ S, we have p a=0, so a+ (p-1) a=0, hence a=0 and (p-1) a=0 which is a contradiction with a ≠0, then F is 
not a S-definite special field. From Theorem 3.11, and Theorem 3.12, we deduce a necessary and sufficient condition 
under which a field is S- definite special field. 
 
Corollary3.13: Let F be a field. Then F is a S- definite special field if and only if F is a  field of characteristic zero. 
From Corollary 3.13, and Theorem 3.2 we deduce that every S-definite special field is a S-special definite field but the 
converse is not true in general as Ζp(x) is a field of characteristic p which is a S-special definite field,since it contains 
the ring Ζp[x] . But Ζp(x) is not a S-definite special field. 
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