International Research Journal of Pure Algebra -3(6), 2013, 242-246

Available online through www.rjpa.info ISSN 2248-9037

UNION FUZZYSOFT N-GROUP

A. Solairaju¹, P. Sarangapani² and R. Nagarajan^{3*}

¹AssociateProfessor, PG & Research Department of Mathematics, Jamal Mohamed college, Triuchirappalli-20, Tamilnadu, India

²Assistant Professor, Department of Computer Science, Kurinji College of Arts & Science, Tiruchirappalli-02, Tamilnadu, India

³Associate Professor, Department of Mathematics, J J College of Engineering & Technology, Tiruchirappalli-09, Tamilnadu, India

(Received on: 08-06-13; Revised & Accepted on: 26-06-13)

ABSTRACT

In this paper, we introduce Union Fuzzy soft N-Group by using Molodtsov's definition of soft sets and investigate their related properties with respect to α -inclusion of soft sets.

Keywords: Soft set – Fuzzy Soft set – Soft N-group – Union Fuzzy Soft N-Group - α inclusion.

SECTION - 1:

INTRODUCTION

In 1999, Molodtsov's [26] proposed an approach for Modeling, Vagueness and Uncertainity, called soft set theory, since its inception, works on soft set theory have been progressing rapidly with a wide range applications especially in the mean of Algebraic structures as in [2-12]. The structures of soft sets operations of soft sets and some related concepts have been studied by [14-19]. The theory of soft set continues to experience tremendous growth and diversification in the mean of soft decision making as in the following studies [20-23] as well. Atagun and Sezgin [33] defined soft N-subgroups and soft N-ideals of an N-group, they studied their properties with respect to soft set operators in more detail. In this paper we introduce Union Fuzzy Soft N-Group by using Molodtsov's definition of soft sets and investigate their related properties with respect to α -inclusion of soft sets.

SECTION - 2: PRELIMINARIES

Definition 2.1: Let $(\Gamma, +)$ be a group and μ : N X $\Gamma \rightarrow \Gamma(n, \nu) \rightarrow n\nu$, (Γ, μ) is called an N-group if $x, y \in N$ and $\forall \nu \in \Gamma$,

- (i) x(y v) = (xy) v and
- (ii) (x+y) v = x v + y v. It is denoted by N^{Γ} .

Clearly N itself is an N-group by natural operation. A subgroup H of Γ with NH \subseteq H is said to be an N-subgroup of $\subseteq \Gamma$. Γ and Ψ be two N-groups then $f:\Gamma \to \Psi$ is called an N-homomorphism if $\forall v, H \in \Gamma, \forall n \in \mathbb{N}$

- (i) f(v + H) = f(v) + f(H) and
- (ii) f(nv) = nf(v)

For all undefined concepts and notations, we refer to [29]. From now on U refers to initial universe, E is a set of parameters 2^U is the power set of U and A, B, C \subseteq E

Definition 2.2: Let U be any Universal set, E set of parameters and $A \subseteq E$, then a pair (F,A) is called soft set over U, where F is a mapping from A to 2^U , the power set of U.

Example 2.1: Let $X = \{c_1, c_2, c_3\}$ be the set of three cars and $E = \{costly(e_1), metallic colour (e_2), cheap(e_3)\}$ be the set of parameters, where $A = \{e_1, e_2\} \subset E$. then $(F, A) = \{F(e_1) = \{c_1, c_2, c_3\}, F(e_2) = \{c_1, c_2\}$ } is the crisp soft set over X.

A. Solairaju¹, P. Sarangapani² and R. Nagarajan^{3*}/ UNION FUZZYSOFT N-GROUP/RJPA- 3(6), June-2013.

Definition 2.3: Let U be the universal set, E set of parameters and $A \subset E$. Let F(X) denote the set of all fuzzy subsets of U, then a pair (F,A) is called fuzzy soft set over U, where F is a mapping from A to F(U).

Example 2.2: Let $U=\{c_1,c_2,c_3\}$ be the set of three cars and $E=\{costly(e_1),metalliccolor(e_2), cheap(e_3)\}$ be the set of parameters, where $A=\{e_1,e_2\}\subset E$. then $(F,A)=\{F(e_1)=\{c_1/0.6,c_2/0.4,c_3/0.3\}, F(e_2)=\{c_1/0.5,c_2/0.7,c_3/0.8\}$ is the fuzzy soft set over U denoted by F_A .

Definition 2.4: Let F_A be a fuzzy soft set over U and α be a subset of U then upper α - inclusion of F_A denoted by $F_A^{\alpha} = \{x \in A / F(x) \ge \alpha \}$. Similarly $F_A^{\alpha} = \{x \in A / F(x) \le \alpha \}$ is called lower α -inclusion of F_A .

Definition 2.5: Let F_A and G_B be fuzzy soft sets over the common universe U and ψ : $A \to B$ be a function then fuzzy soft image of F_A under ψ over U denoted by $\psi(F_A)$ is a set-valued function, where $\psi(F_A)$: $B \to 2^U$ defined by

$$\psi(F_A)$$
 (b)={ \cup {F(a) / a ∈ A and ψ (a)=b}

If $\psi^{\text{-1}}(b) \neq \phi$ for all $b \in B$, the soft pre-image of G_B under ψ over U denoted by $\psi^{\text{-1}}(G_B)$ is a set-valued function, where $\psi^{\text{-1}}(G_B)$: $A \to 2^U$ defined by $\psi^{\text{-1}}(G_B)(b) = G(\psi(a))$ for all $a \in A$ then fuzzy soft anti-image of F_A under ψ over U denoted by $\psi(F_A)$ is a set-valued function, where $\psi(F_A)$: $B \to 2^U$ defined by $\psi^{\text{-1}}(F_A)(b) = \{ \cap \{F(a) \mid a \in A \text{ and } \psi(a) = b \}$, if $\psi^{\text{-1}}(b) \neq \phi$ for all $b \in B$

Definition 2.6: Let H be an N-subgroup of Γ and Γ _H be a fuzzy soft over Γ . If for all $x, y \in H$ and $n \in N$,

- (i) $F(x-y) \le F(x) \cup F(y)$ and
- (ii) $F(nx) \le F(x)$ then the fuzzy soft set F_H is called a union fuzzy soft N-subgroup of Γ and denoted by $F_H < N\Gamma$

Example 2.3: Consider $N = \{0, 1, 2, 3\}$ be a group with operation +

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

If we define a fuzzy soft set G_H over Γ by

$$G(x) = \{y \in \Gamma / 3x = y\} \text{ for all } x \in H.$$

Then $G(0)=\{0\}$ and $G(2)=\{2\}$ since $G(2-2)=G(0)\neq G(2)$, G_H is not a union soft N-subgroup of Γ

Definition 2.7: The relative complement of the fuzzy soft set F_A over U is denoted by F_A^r where F_A^r : $A \rightarrow 2^U$ is a mapping given as $F_A^r(x) = U/F_A(x)$, for all $x \in A$.

SECTION - 3: CHARACTERIZATION'S OF UNION FUZZY SOFT N-GROUP

Proposition 3.1: Let F_A be a fuzzy soft set over Γ and α be a subset of Γ . If F_A is a union fuzzy soft N-subset of Γ , then upper α - inclusion of F_A is an N-subgroup of Γ .

Proof: Since F_A is union fuzzy soft N-subgroup of Γ . Assume $x, y \in F_A{}^{\alpha}$ and $n \in N$, then $F(x) \ge \alpha$ and $F(y) \ge \alpha$, we need to show that $x-y \in F_A{}^{\alpha}$ and $n \in F_A{}^{\alpha}$ since F_A is union fuzzy soft N-subgroup of Γ , it follows that $F(x-y) \le \max\{F(x), F(y)\} \ge \min\{\alpha, \alpha\} \ge \alpha$ and $F(nx) \le \alpha \ge \alpha$ which completes the proof.

Proposition 3.2: Let F_A be a fuzzy soft set over Γ then F_A is a union fuzzy soft N-subgroup of Γ if $F_A^{\ r}$ is fuzzy soft N-subgroup of Γ .

Proof: Let F_A be a union fuzzy soft N-subgroup of Γ . Then for all $x, y \in A$ and $n \in N$.

$$\begin{split} F_{A}{}^{r}(x-y) &= \Gamma / F_{A}(x-y) \\ &\geq \Gamma / \max\{F_{A}(x), F_{A}(y)\} \\ &= \min\{(\Gamma / F_{A}(x)), \ \Gamma / F_{A}(y)\} \\ &= \min\{F_{A}{}^{r}(x), F_{A}{}^{r}(y)\} \end{split}$$

$$\begin{aligned} F_A^{\ r}(n\ x) = & \Gamma \ / \ F_A(n\ x) \\ \geq & \Gamma \ / \ F_A(x) \end{aligned}$$

 $F_A^r(n x) = F_A^r(x)$, $F_A^r(x)$ is fuzzy soft N-subgroup of Γ .

Proposition3.3: Let F_A : $X \rightarrow X^1$ be a soft homomorphism of N-subgroups. If F_A is union fuzzy soft N-subgroups of X^1 , then F_A is union fuzzy soft N-subgroups of X^1 .

Proof: Suppose F_A is union fuzzy soft N-subgroups of X^1 , then (i) Let $x^1, y^1 \in X^1$, then exists $x, y \in X$ such that

$$f(x) = x^1$$
 and $f(y) = y^1$, we have

$$\begin{split} F_A(x^1 - y^1) &= F_A(f(x) - (f(y)) \\ &\leq max\{F_A(f(x)), F_A(f(y)\} \end{split}$$

$$F_A(x^1-y^1) = max\{F_A^1(x),F_A^1(y)\}$$

(ii)
$$F_A(n x^1) = F_A(nf(x))$$

 $\leq F_A^f(x)$

$$F_A(n x^1) = F_A^f(x)$$

.: F_A is union fuzzy soft N-subgroups X¹

Proposition3.4: Let F_A be union soft N-sub groups of X and $F_A{}^{\alpha}$ be a fuzzy soft set in X given by $F_A{}^{\alpha}(x) = F_A(x) + 1 - F(1)$ for all $x \in X$ then $F_A{}^{\alpha}$ is union fuzzy soft N-subgroups of X and $F_A \subseteq F_A{}^{\alpha}$.

Proof: Since F_A is union fuzzy soft N-subgroups of X and $F_A{}^\alpha(x) = F_A(x) + 1 - F_A(1)$ for $x \in X$. For any $x, y \in X$, we have $F_A(1) = F_A(1) + 1 - F_A(1) = 1 > F_A{}^\alpha(x)$ and for all $x, y \in X$, we have

```
\begin{split} F_{A}{}^{\alpha} & (x\text{-}y) = F_{A}(x\text{-}y) + 1\text{-}F_{A}(1) \\ & \leq max \{F_{A}(x), F_{A}(y)\} + 1\text{-}F_{A}(1) \\ & = max \{F_{A}(x) + 1\text{-}F_{A}(1), F_{A}(y) + 1\text{-}F_{A}(1)\} \\ & = max \{F_{A}{}^{\alpha}(x), F_{A}{}^{\alpha}(y)\} \end{split} F_{A}{}^{\alpha}(nx) = F_{A}(nx) + 1\text{-}F_{A}(1) \\ & = F_{A}(x) + 1\text{-}F_{A}(1) \\ & = F_{A}{}^{\alpha}(x), F_{A}{}^{\alpha} \text{ is union fuzzy soft N-subgroup of X.} \end{split}
```

Proposition3.5: Let F_A and G_B to fuzzy soft gets over Γ , where A and B are N- groups of Γ and \emptyset : $A \to B$ is an N-homomorphism. If F_A is union fuzzy soft N- subgroups of Γ , then so is \emptyset (F_A).

Proof: Let $\alpha_1, \alpha_2 \in B$ such \emptyset is surjective, there exists $a_1, a_2 \in A$ such that $\emptyset(a_1) = \alpha_1$ and $\emptyset(a_2) = \alpha_2$ thus

```
\begin{split} (\not O \; F_A)(\alpha_1 - & \alpha_2) = \max\{F(a)/A \in A, \, \not O \; (A) = \alpha_1 - \alpha_2\} \\ &= \max\{F(a)/A \in A, A = \not O \; ^{-1}(\alpha_1 \cdot \alpha_2)\} \\ &= \max\{F(a)/A \in A, A = \not O \; ^{-1}(\not O (a_1 - a_2)) = A_1 - A_2\} \\ &= \max\{F(a_1 - a_2)/\alpha_1, \alpha_2 \in B, \not O \; (A_i) = \alpha_i \; , i = 1, 2\} \\ &= \min\{(\max\{F(a_1)/\alpha_1 \in B, \not O \; (a_1) = \alpha_1)\}, \{\max(F(a_2)/\alpha_2 \in B, \not O \; (a_2) = \alpha_2)\} \\ &= \min\{\not O \; (F_A)(a_1), \not O \; (F_A)(a_2)\} \end{split}
```

Now let $n \in \mathbb{N}$ and $\alpha \in \mathbb{B}$. Since Øsurjective, then exists $\bar{A} \in A$ such that Ø $(\bar{A}) = 0$

```
\begin{split} (\varnothing (F_A) & (n \ \alpha) = \max\{F(A)/A \in A, \varnothing (A) = n\alpha\} \\ & = \max\{F(A)/A \in A, A = \varnothing^{-1}(n\alpha)\} \\ & = \max\{F(A)/A \in A, A = \varnothing^{-1}(n\varnothing(\bar{A}))\} \\ & = \max\{F(A)/A \in A, A = \varnothing^{-1}(\varnothing(nA)) = n\bar{A}\} \\ & = \max\{F(\bar{A})/\bar{A} \in A, \varnothing (\bar{A}) = \alpha\} \\ & = \max\{F(\bar{A})/\bar{A} \in A, \varnothing (\bar{A}) = \alpha\} \\ & = \max(\varnothing (F_A))(\alpha) \end{split}
```

 \emptyset (F_A) is union fuzzy soft N-subgroup of Γ .

Proposition3.6: Let $F_A: X \to Y$ be a soft homomorphism of N-subgroups. If F_A is union fuzzy soft N-subgroups of Y, then F_A^f is union fuzzy soft N-subgroups of X.

A. Solairaju¹, P. Sarangapani² and R. Nagarajan^{3*} / UNION FUZZYSOFT N-GROUP/RJPA- 3(6), June-2013.

Proof: Suppose F_A is union fuzzy soft N-subgroups of Y, then

```
\begin{split} \text{i) For all } x,y \in & X, \text{ we have } \\ & F_A(x\text{- }y) = F_A(f(x\text{- }y)) \\ & = F_A(f(x)\text{-}f(y)) \\ & = \max\{F_A(f(x),\!F_A(f(y))\} \\ & = \max\{F_A^f(x),\!F_A^f(y)\} \\ \text{ii) } F_A^f(n|x) = F_A(f(n|x)) \\ & \leq F_A(f(x)) \\ & = F_A^f(x) \end{split}
```

F_A^f is union fuzzy soft N- subgroups of X.

Proposition3.7: Let F_A and G_B be fuzzy soft sets over Γ , where A and B are N-subgroups of Γ and \emptyset be on N-homomorphism from A to B if G_B is a union fuzzy soft N-subgroup of Γ , then so is $\emptyset^{-1}(G_B)$.

```
\begin{split} \textbf{Proof: Let } a_1, a_2 &\in A, \text{ then } \\ ( \varnothing^{\text{-1}}(G_B) ) \ (a_1 \text{-} a_2) &= G( \varnothing(a_1 \text{-} a_2) ) \\ &\geq \max \{ G( \{ \varnothing \ (a_1), \varnothing \ (a_2) \} \\ &= \max \{ ( \varnothing^{\text{-1}}(G_B)(a_1), \varnothing^{\text{-1}}(G_B \ (a_2) \} \\ \end{split} Now let n \in N and A \in A, then  ( \varnothing^{\text{-1}}(G_B) ) \ (nA) &= G \ ( \varnothing(nA) ) \\ &= G(n \ \varnothing(A)) \\ &= G( \ \varnothing(A) ) \\ &= ( \varnothing^{\text{-1}}(G_B) ) (A) \end{split}
```

 $\emptyset^{-1}(G_R)$ is a union fuzzy soft N-subgroups of Γ .

CONCLUSION

This paper summarized the basic concepts of soft sets.By using these concepts we studied the algebraic properties of union fuzzy soft N-groups. This work focused on fuzzy soft pre-image, fuzzy soft image. fuzzy soft anti image. To extend this work one could study the properties of fuzzy soft N-groups in other algebraic structures such as rings and fields.

REFERENCES

- 1. Acar U and Koyuncu F, Tanay B (2010) Soft sets and soft rings Comput math Appl 59:3458-3463.
- 2. Ali MI, Feng F, Liu X, Min WK, Shabir M(2009) On some new operations in soft set theory. Comput math Appl 57:1547-1553.
- 3. Aktas H, Cağman N (2007) Soft sets and Soft groups, Informn Sci 177:2726-2735
- 4. Atagun AO, Sezgin A(2011) Soft structures of rings and fields and modules Comput math Appl 61(3) 592-601
- Aygŭnoglu A, Aygŭn H (2009) Introduction to fuzzy soft groups Comput math Appl 58:1279-1286.
- 6. Cogman N Enginoğlu S (2010) Soft set theory and uni-int decision making Eur J Oper Res 207:848-855.
- 7. Coğman N Enginoğlu S (2010) Soft matrix theory and its decision making Comput math Appl 59:3308-
- 8. CağmanNCitak F Enginoğlu S (2010) Fuzzy Parameterized fuzzy soft set theory and its applications. Turkish J Fuzzy Syst. 1:21-35.
- 9. CağmanNCitak F Enginoğlu S (2011) Fuzzy soft set theory and its applications, Iran.J fuzzy syst 8(3):137-147.
- 10. Feng F, Liu X Y, Leoreanu-Fotea V, Jun Y B (2011) Soft sets and soft rough sets. Inform Sci 181(6): 1125-1137.
- 11. Feng F, Liu YM Leoreanu- FoteaV (2010) Application of Level soft sets in decision making based on interval-valued Fuzzy soft sets. Comput Math Appl60:1756-1767.
- 12. Feng F, Li C Davvaz B, Ali MI (2010) soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Compute 14(9): 899-911.
- 13. Feng F Jun YB, L iu X, Li L(2010) An adjustable approach to fuzzy soft set based decision making. J Compute Appli Math 234:10-20.
- 14. Feng F Jun YB Zhao X (2008) Soft semi rings. Compute Math Appli 56:2621-2628.
- 15. Jun YB (2008) Soft BCK/BCI Algebras. Comput Math Appli 56:1408-1413.
- 16. Y.B. Jun, C.H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform, Sci. 178 (2008) 2466-2475.
- 17. Jun YB, Kim H S, Neggers J (2009) Pseudo D Algebras. Inform Sci 179:1751-1759.
- 18. Y.B. Jun, Lee K J, Zhan J (2009) Soft P-ideals of soft BCI-algebras, Compute. Math, Appl. 58:2060-2068.

A. Solairaju¹, P. Sarangapani² and R. Nagarajan^{3*}/ UNION FUZZYSOFT N-GROUP/RJPA- 3(6), June-2013.

- 19. Y.B. Jun, Lee K J, Khan A (2010) Soft ordered semi groups. Math Logic O 56(1): 42-50.
- Y.B. Jun, Lee K J, Park C H (2010) Fuzzy Soft set theory applied to BCK/BCI algebras. Compute Math appli 59: 3180-3192.
- 21. Kong Z, Gao L, Wang L, Li S (2008) The Normal parameter reduction of soft sets and its algorithms. Compute Math. Appli 56:3029-3037.
- 22. Kovkov D V, Kolbanov V M, D. Molodtsov (2007) Soft sets theory based optimization. J Compute SystSciint 46(6):872-880.
- 23. P.K. Maji, A.R. Roy, R. Biswas, An application of soft sets in a decision making problem, Compute, Math. Appl. 44 (2002) 1077-1083.
- 24. P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Compute, Math, Appl. 45 (2003) 555-562.
- 25. Majumdğar B, Samanta SK (2010) Generalised fuzzy soft sets. Compute math Appli 59:1425-1432.
- 26. D. Molodtsov, Soft set theory First results, Compute. Math, Appl. 37 (1999) 19-31.
- 27. D. Molodtsov, Lionov V Y, Kovkov D V (2006) Soft sets technique and its appli. NechetkieSystemi I MyakieVychisleniya 1(1): 8-39.
- 28. Mushrif M M, Sengupta S, A. K Roy (2006) Texture classification using a novel, soft set theory based classification algorithm. Lect Notes Compute Science 3851:246-254.
- 29. C.H. Park, Y.B. Jun, Ozturk M A (2008) Soft WS-Algebras Commun Korean Math Soc 23(3):313-324.
- 30. P.K. Maji, A.R. Roy, (2007) A fuzzy soft set theoretic approach to decision making problem, J Compute Math. Appli 203: 412-418.
- 31. R. Nagarajan and N. Rajagopal,(2013) S-Fuzzy version of soft N-group, International Journal of Emerging Technology and Advanced Engineering, Vol.3, No.5, PP 322-327.
- 32. Sezgin A, AtagunAO (2011) An operations of soft sets. Compute Math Appli 61(5):1457-1467.
- 33. Sezgin A, Atagun AO Aygun E (2011) A Note on soft near rings and idealistic soft near rings. Filomat 25(1):53-68.
- 34. Xiao Z, Gong K, Zou Y (2009) A combined forecasting approach based on fuzzy soft sets. J Compute Math Appli 228:326-333.
- 35. Zhan J, Jun Y B (2010), Soft BL Algebras based on fuzzy sets. Compute math. Appli.59:2037-2046.
- 36. Zou Y, Xiao Z (2008) Data analysis approaches of soft sets under incomplete information. Knowl-based Syst 21:941-945.

Source of support: Nil, Conflict of interest: None Declared