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ABSTRACT  
In this paper, we give generalized on common fixed points in fuzzy metric space. our results extended and generalized 
fixed point theorem on complete fuzzy metric spaces. 
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1. INTRODUCTION   
Introduced the concept of fuzzy metric spaces in different ways. In [3, 4], George and Veeramani modified the concept 
of fuzzy metric space which introduced by Kramosil and Michalek [10]. They, also, obtained the Hausdorff topology 
for this kind of fuzzy metric spaces and showed that every metric induces a fuzzy metric. Sessa [12] introduced a 
generalization of commutativity, so called weak commutativity. Further Jungck [7] introduced more generalized 
commutativity, which is called compatibility in metric space. He proved common fixed point theorems. Recently, 
Bijendra Singh and M. S. Chauhan [13] introduced the concept of compatibility in fuzzy metric space and proved some 
common fixed point theorems in fuzzy metric spaces in the sence of George and Veeramani with continuous t-norm * 
defined by a * b = min{a, b} for all a, b * [0, 1].In this paper we modify common fixed point theorems obtained in [13] 
and we characterize the conditions for two continuous self mappings of complete fuzzy metric space have a unique 
common fixed point. 
 
2. PRELIMINARIES 
Definition 2.1: [11] A binary operation *: [0, 1] × [0, 1] → [0, 1] is called a continuous t-norm if ([0, 1], *) is an 
abelian topological monoid with 1 such that a * b ≤ c * d, whenever a ≤ c, b ≤ d for all a, b, c, d ∈ [0, 1]. Examples of 
t-norm are a * b = ab and a * b =min {a, b}. 
 
Definition 2.2: [3] The 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary set, *is a continuous t-norm 
and M is a fuzzy set on X2 × (0, ∞) satisfying the following conditions: 
(1) M(x, y, t) > 0, 
(2) M(x, y, t) = 1 if and only if x = y, 
(3) M(x, y, t) = M(y, x, t), 
(4) M(x, y, t) *M(y, z, s) ≤ M(x, z, t + s), 
(5) M(x, y,*·): (0, ∞) → [0, 1] is continuous, for all x, y, z ∈ X and t, s > 0. 
 
Let (X, d) be a metric space, and let a * b = ab or a * b =min {a, b}. Let M(x, y, t) = t/t+ d(x, y) for all x, y ∈ X and t > 0. 
Then (X, M,*) is a fuzzy metric space, and this fuzzy metric M induced by d is called the standard fuzzy metric [3]. 
 
Definition 2.3: [5] A sequence {xn} in a fuzzy metric space (X, M, *) is said to be convergent to a point x ∈ X (denoted 
by lim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛 = 𝑥𝑥), if for each 𝜖𝜖 > 𝑜𝑜 and each t > 0, there exists n0 ∈ N such that M(xn, x, t) > 1 − 𝜖𝜖  for all n ≥ n0..a 
sequence {xn} in a fuzzy metric space (X,M, *) converges to a point x 𝜖𝜖 X if and only if limn→∞M(xn, x, t) = 1. 
 
A sequence {xn} in a fuzzy metric space (X, M*) is called Cauchy sequence if for each 𝜖𝜖 > 0 and each t > 0, there exists 
n0 𝜖𝜖 N such that M (xn, xn+p, t) > 1 − 𝜖𝜖 for all n ≥ n0 and all t > 0.A fuzzy metric space in which every Cauchy sequene 
is convergent is saidto be complete. 
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George and Veeramani [3] give an example that (R, M, *) is not complete in the sense of [5], where M is the standard 
fuzzy metric with d(x, y) = |x − y|, and so to make R complete fuzzy metric space George and Veeramani redefine 
cauchy  sequen  
 
Definition 2.4: [3] A sequence {xn} in a fuzzy metric space (X, M, *) is called Cauchy sequence if for each ∀𝜀𝜀> 0 and 
each t > 0, there exists n0 ∈ N such that M (xn, xm, t) > 1 – 𝜀𝜀 for all n, m,≥ 𝑛𝑛0. 
 
Definition 2.5: [13] Self mappings 𝜀𝜀 A and B of a fuzzy metric space (X, M, *) is said to be compatible if limn→∞ 
M (ABxn, BAxn, t) = 1 for all t > 0, whenever {xn} is a sequence in X such that limn→∞Axn = limn→∞Bxn = z for some 
 z 𝜀𝜀 X. 
 
From now on, let (X, M, *) be a fuzzy metric space such that limt→∞M(x, y, t) =1 for all x, y 𝜀𝜀 X and s * s ≥ s for all 
 s [ε 0, 1]. for all n, m ≥ n0.     
 
Lemma 2.6: [5] Let (X, M, *) be a fuzzy metric space. Then for  
1. all x, y ∈X, M(x, y, *) is non decreasing. 
2. If there exists q ∈ (0, 1) such that M(x, y, qt) ≥ M(x, y, t) for all x, y ∈ X and t > 0, then x = y. 
3. let A and S be continuous self mappings of X and [A, S] be compatible. Let {xn} be a sequence in X such that Axn → z 
and Sxn → z. Then ASxn → Sz. 
 
Lemma 2.7: [9] The only t-norm * satisfying r * r ≥ r for all r ∈ [0, 1] is the minimum t-norm, that is,  
a * b = min {a, b} for all a, b ∈ [0, 1]. 
 
3. COMMON FIXED POINT THEOREMS  
 
Let (X, M*) be complete fuzzy metric space and let A, B, S and T be self mappings on X such that the following 
conditions are satisfied 
1. AX⊑ TX, BS⊑ SX 
2. S and T are continuous  
3. The pair [A, S] and [B,T] are compactable. 
4. there exist k∈(0,1) such that for ever x,y∈ X and t>0 
 
F(M(Sx,Ty,Kt)*M(Ax,By,t)*(M(Sx,Ax,t)*M(Ty,Ny,t)*M(Sx,By,t)*M(Ty,Ax,t) ≥ 1. 
 
Then A, B, S and T have a unique common fixed point in X. 
 
Proof: Let 𝑥𝑥0 be arbitrary point of X. From (1) we can construct a sequence {𝑦𝑦𝑛𝑛} In X as follow: 
 
𝑦𝑦2𝑛𝑛+1=S𝑥𝑥2𝑛𝑛  =B𝑥𝑥2𝑛𝑛+1 and 𝑦𝑦2𝑛𝑛+2= S𝑇𝑇𝑥𝑥2𝑛𝑛+1 =𝐴𝐴𝑥𝑥2𝑛𝑛+2 for all n=0, 1, 2… 
 
Then by (4), we have, for any t > 0 
 
F(M(S𝑥𝑥2𝑛𝑛 , T𝑥𝑥2𝑛𝑛+1, 𝑘𝑘𝑘𝑘)* M(A𝑥𝑥2𝑛𝑛 , 𝐵𝐵𝑥𝑥2𝑛𝑛+1, 𝑘𝑘)* M(S𝑥𝑥2𝑛𝑛 , A𝑥𝑥2𝑛𝑛 , 𝑘𝑘)* M(T𝑥𝑥2𝑛𝑛+1, B𝑥𝑥2𝑛𝑛+1, 𝑘𝑘)* M(T𝑥𝑥2𝑛𝑛 , B𝑥𝑥2𝑛𝑛+1, 𝑘𝑘)* 
M(T𝑥𝑥2𝑛𝑛+1, A𝑥𝑥2𝑛𝑛 , 𝑘𝑘)) ≥ 1 
 
And so  
 
F(M(S𝑥𝑥2𝑛𝑛 , T𝑥𝑥2𝑛𝑛+1, 𝑘𝑘𝑘𝑘)* M(A𝑥𝑥2𝑛𝑛−1, 𝐵𝐵𝑥𝑥2𝑛𝑛 , 𝑘𝑘)* M(S𝑥𝑥2𝑛𝑛 , A𝑥𝑥2𝑛𝑛−1, 𝑘𝑘)* M(T𝑥𝑥2𝑛𝑛+1, B𝑥𝑥2𝑛𝑛+1, 𝑘𝑘)* M(T𝑥𝑥2𝑛𝑛+1, S𝑥𝑥2𝑛𝑛 , 𝑘𝑘

2
)* 

M(,S𝑥𝑥2𝑛𝑛  T𝑥𝑥2𝑛𝑛−1, 𝑘𝑘
2
)) ≥ 1 

 
By (F-2).we have  
M(S𝑥𝑥2𝑛𝑛 , T𝑥𝑥2𝑛𝑛+1, ℎ𝑘𝑘) ≥M(S𝑥𝑥2𝑛𝑛 , T𝑥𝑥2𝑛𝑛−1, 𝑘𝑘)*M (,S𝑥𝑥2𝑛𝑛  T𝑥𝑥2𝑛𝑛+1, 𝑘𝑘)) 
 
And so  
M (,𝑦𝑦2𝑛𝑛+1 𝑦𝑦2𝑛𝑛+2, ℎ𝑘𝑘) ≥M(,𝑦𝑦2𝑛𝑛+1 𝑦𝑦2𝑛𝑛 , 𝑘𝑘)*M(𝑦𝑦2𝑛𝑛+1 𝑦𝑦2𝑛𝑛+2, 𝑘𝑘)) 
 
Which implies that  
M (,𝑦𝑦2𝑛𝑛+1 𝑦𝑦2𝑛𝑛+2, ℎ𝑘𝑘) ≥M(,𝑦𝑦2𝑛𝑛+1 𝑦𝑦2𝑛𝑛 , 𝑘𝑘)=M(𝑦𝑦2𝑛𝑛  𝑦𝑦2𝑛𝑛+1, 𝑘𝑘)) 
 
Again by (F-2) we have  
M(,𝑦𝑦2𝑛𝑛+1 𝑦𝑦2𝑛𝑛 , ℎ𝑘𝑘)  ≥ M(𝑦𝑦2𝑛𝑛  𝑦𝑦2𝑛𝑛−1, 𝑘𝑘)) 
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In general, we have for all m=1, 2… and t >0 
 
1. M (𝑦𝑦𝑚𝑚+1 𝑦𝑦𝑚𝑚+2, ℎ𝑘𝑘) ≥M (𝑦𝑦𝑚𝑚+1 𝑦𝑦𝑚𝑚 , 𝑘𝑘)=M(𝑦𝑦𝑚𝑚  𝑦𝑦𝑚𝑚+1, 𝑘𝑘)) 
 
To prove that {𝑦𝑦𝑛𝑛 } is a cauchy sequence, first we prove that for any 0<𝜆𝜆 < 1 and t>0 
 
2. M (𝑦𝑦𝑛𝑛+1 𝑦𝑦𝑛𝑛+𝑚𝑚+1, 𝑘𝑘)>1-𝜆𝜆 
 
For all n≥ 𝑛𝑛0 and m∈N. here we use induction from (1), we have  
M (𝑦𝑦𝑛𝑛+1 𝑦𝑦𝑛𝑛+2, 𝑘𝑘) ≥M (𝑦𝑦𝑛𝑛  𝑦𝑦𝑛𝑛+1, 𝑘𝑘

ℎ
) ≥ ⋯… … ≥M (𝑦𝑦1 𝑦𝑦2, 𝑘𝑘

ℎ𝑛𝑛
))  ≥1-𝜆𝜆 

 
Hence (2) is true for m+1 ∈N. Thus {𝑦𝑦𝑛𝑛 } is Cauchy sequence in X. Since (X, M,*) is complete, {𝑦𝑦𝑛𝑛} converges to a 
point z∈X. Since { 𝐴𝐴𝑥𝑥2𝑛𝑛+2},{ 𝐵𝐵𝑥𝑥2𝑛𝑛+1},{ 𝑆𝑆𝑥𝑥2𝑛𝑛},{ 𝑇𝑇𝑥𝑥2𝑛𝑛+1}→z as n→ ∞ 
 
Now, suppose that a is continuous, then the sequence { 𝐴𝐴𝐴𝐴𝑥𝑥2𝑛𝑛} converges to AZ as n→ ∞ notice that for any t>0 
 
F(M(AS𝑥𝑥2𝑛𝑛 , T𝑥𝑥2𝑛𝑛+1, 𝑘𝑘𝑘𝑘)* M(AA𝑥𝑥2𝑛𝑛 , 𝐵𝐵𝑥𝑥2𝑛𝑛+1, 𝑘𝑘)* M(S𝐴𝐴𝑥𝑥2𝑛𝑛 ,A A𝑥𝑥2𝑛𝑛 , 𝑘𝑘)* M(T𝑥𝑥2𝑛𝑛+1, B𝑥𝑥2𝑛𝑛+1, 𝑘𝑘)* M(SA𝑥𝑥2𝑛𝑛 , 
B𝑥𝑥2𝑛𝑛+1, 𝑘𝑘)* M(T𝑥𝑥2𝑛𝑛+1, AA𝑥𝑥2𝑛𝑛 , 𝑘𝑘) ) ≥ 1 
 
And then, by letting n→ ∞, since F is continuous, we have  
 
F(M(Az, z, Kt)*M(Az, z, t)*1,1*M(Az, z, t)* M(Az, z, t) ≥1. 
 
Therefore from, (f-3), we have M(Az, z, Kt) ≥ M(Az, z, t) 
 
We have AZ=z. further more by (iv) we have  
 
F(M(Sz, T𝑥𝑥2𝑛𝑛+1, 𝑘𝑘𝑘𝑘)* M(Az, 𝐵𝐵𝑥𝑥2𝑛𝑛+1, 𝑘𝑘)* M(Az, sz, 𝑘𝑘)* M(T𝑥𝑥2𝑛𝑛+1, B𝑥𝑥2𝑛𝑛+1, 𝑘𝑘)* M(Sz, B𝑥𝑥2𝑛𝑛+1, 𝑘𝑘)*  
M(T𝑥𝑥2𝑛𝑛+1, Az, 𝑘𝑘)) ≥ 1 
 
And, letting n→ ∞ 
F(M(Sz, z, Kt)*1,*M(Sz, z, t)*1* M(Sz, z, t)*1) ≥1. 
 
On the other hand since  
M(Sz, z, t)* ≥ M(Sz, z, 𝑘𝑘

2
) = M(Sz, z, 𝑘𝑘

2
)*1 

 
And F is none increasing in the fifth variable, we have, for any t > 0 
 
F (M (Sz, z, Kt)*1, *M(Sz, z, t)*1* M(Sz, z, 𝑘𝑘

2
)*1) ≥ 

 
F(M(Sz, z, Kt)*1,*M(Sz, z, t)*1* M(Sz, z, t)*1) ≥ 1 
 
Which implies by (F-2) that Sz=z. this means that z is the range of S and since S(x)⊑B(X), there exists a point u∈X 
such that Bu=z. Using (iv) we have successively  
 
F(M(Sz, Tu, Kt)*M(Az, Bu, t)* M(Sz, Az, t)*, M(Tu, Bu, t)* M(Sz, Bu, t)* M(Tz, Az, t) ∗≥1. 
 
F(M(z, Tu, Kt)*1*1* M(z, Tu, t)*,1*M(z, tu, t)* ∗≥1. 
 
Which implies by (F-2) that z=Tu, since Bu=Tu=z and B, T are compatible of type (𝛼𝛼).𝑤𝑤𝑤𝑤 have TTu=Btu 
soTz=TTu=Btu=Bz, therefore, from (iv) we have for any t>0, 
 
F(M(Sz, Tz, Kt)*M(Az, Bz, t)* M(Sz, Az, t)*,M(Tu, Bz, t)* M(Sz, Bu, t)* M(Tz, Az, t) ∗≥1. 
 
F(M(z, Tz, Kt)*M(z, Bz, t)* 1*,1* M(z, Tz, t)* M(z, Tz, t) ∗≥1. 
 
Thus from (T-3), we have M(z, Tz, Kt) ≥M(z, Tz, t), again from we have z=Tz=Bz. consequently, z is a common fixed 
point of S, T, A and B. The same result holds, if we assume that B is continous instead of A. 
 
Now, suppose that S is continuous, then the sequence {SA𝑥𝑥2𝑛𝑛} converges to Sz as n→ ∞, notice that, for any t>0. 
F(M(AS𝑥𝑥2𝑛𝑛 ,Sz,t) ≥M(AS𝑥𝑥2𝑛𝑛 ,SS𝑥𝑥2𝑛𝑛 ,𝑘𝑘

2
) *1* M(SS𝑥𝑥2𝑛𝑛𝑆𝑆𝑆𝑆,𝑘𝑘

2
) 
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Now, since S is continuous and S, A are compatible of type (𝛼𝛼) letting n→ ∞,, we deduce that the sequence {A𝑆𝑆𝑥𝑥2𝑛𝑛} 
converges to Sz, using (iv) we have for any t>0 
 
F(M(SS𝑥𝑥2𝑛𝑛 , T𝑥𝑥2𝑛𝑛+1, 𝑘𝑘𝑘𝑘)* M(AS𝑥𝑥2𝑛𝑛 , 𝐵𝐵𝑥𝑥2𝑛𝑛+1, 𝑘𝑘)* M(S𝑆𝑆𝑥𝑥2𝑛𝑛 ,A A𝑆𝑆, 𝑘𝑘)* M(T𝑥𝑥2𝑛𝑛+1, B𝑥𝑥2𝑛𝑛+1, 𝑘𝑘)* M(SS𝑥𝑥2𝑛𝑛 , B𝑥𝑥2𝑛𝑛+1, 𝑘𝑘)* 
M(T𝑥𝑥2𝑛𝑛+1, AS𝑥𝑥2𝑛𝑛 , 𝑘𝑘) ) ≥ 1 
 
And then, by letting n→ ∞, since F is continuous, we have  
 
F(M(Sz, z, Kt)*M(Sz, z, t)* 1*,1* M(Sz, z, t)* M(Sz, z, t) ∗≥1. 
 
Thus from (F-3) we have M (Sz, z, Kt) ≥M(Sz, Tz, t ) again from we have Sz=z. This means that z is the range of S 
and since S(X)⊑B(X) there exists a point vbelong X such that nBv=z . Using (iv), we have for any t>0  
 
F (M(SS𝑥𝑥2𝑛𝑛 , T𝑣𝑣, 𝑘𝑘𝑘𝑘)* M(AS𝑥𝑥2𝑛𝑛 , 𝐵𝐵𝑣𝑣, 𝑘𝑘)* M(S𝑆𝑆𝑥𝑥2𝑛𝑛 , A𝑆𝑆𝑥𝑥2𝑛𝑛 , 𝑘𝑘)* M(Tv, B𝑣𝑣, 𝑘𝑘)* M(SS𝑥𝑥2𝑛𝑛 , B𝑣𝑣, 𝑘𝑘)* M(Tv, AS𝑥𝑥2𝑛𝑛 , 𝑘𝑘) ≥ 1 
 
letting n→∞,  
 
F(M(z, Tv, Kt)* 1*,1* M(z, Tv, t)*1* M(z, Tv, t) ∗≥1. 
 
Which implies by (F-2) that z=Tv, since Bv==Tv=z and B, T are compatible of type (𝛼𝛼) we have TBv=BBv and so 
Tz=TBv=BBv=Bz. Thus from (iv), we have  
 
F(M(S𝑥𝑥2𝑛𝑛 , T𝑆𝑆, 𝑘𝑘𝑘𝑘)* M(A𝑥𝑥2𝑛𝑛 , 𝐵𝐵𝑆𝑆, 𝑘𝑘)* M(S𝑥𝑥2𝑛𝑛 , A𝑥𝑥2𝑛𝑛 , 𝑘𝑘)* M(Tz, B𝑆𝑆, 𝑘𝑘)* M(S𝑥𝑥2𝑛𝑛 , B𝑆𝑆, 𝑘𝑘)* M(Tv, A𝑥𝑥2𝑛𝑛 , 𝑘𝑘) ) ≥ 1 
 
Letting n→∞, 
 
F(M(z, Tz, Kt) M(z, Tz, t)* 1*, 1* M(z, Tz, t)* M(z, Tz, t) ∗≥1. 
 
Thus z=Tz=Bz. This means that z is the range of T and since T(x) ⊑ 𝐴𝐴(𝑋𝑋), there exists w belong sto X such that Aw=z.  
 
Thus from (iv) we have for any t>0. 
 
F(M(Sw, T, z, Kt)*M(Aw, Bz1, t)* M(Sw, Aw, t)* M(Tz, Bz, t)* M(Sw, Bz, t) ∗ M(Tz, Aw, t) ≥1. 
 
F(M(Sw, z, Kt)*1* M(Sw, z, t)* 1* M(Sw, z, t) ∗ 1) ≥1 
 
And by (F-2) we have z=Sw =Aw =z and S, A, are compatible of type (𝛼𝛼) we have z=Sz+Saw=AAw=Az and thus 
z=Az. consequently, z is a common fixed point S, T, A and B. The same results holds if we assume that T is continuous 
instead of S. 
 
Finally we show that the point z is unique common fixed point of S, T, A, B. Suppose that S, T, A and B have another 
common fixed point 𝑆𝑆1theny, by (iv) we have, for any t>0. 
 
F(M(Sz, T𝑆𝑆1, 𝑘𝑘𝑘𝑘)* M(Az, 𝐵𝐵𝑆𝑆1, 𝑘𝑘)* M(Sz, A𝑆𝑆, 𝑘𝑘)* M(T𝑆𝑆1, B𝑆𝑆1𝑘𝑘)* M(Sz, B𝑆𝑆1, 𝑘𝑘)* M(T𝑆𝑆1, A𝑆𝑆, 𝑘𝑘) ) ≥ 1 
 
F(M(z,, 𝑆𝑆1,Kt)* (M(z,, 𝑆𝑆1,t) 1*,1* M(z, 𝑆𝑆1,t)*1* M(z, 𝑆𝑆1, t) ∗≥1 
 
Thus from (F-3) we have (M (z,, 𝑆𝑆1𝐾𝐾, t) ≥ (M(z,, 𝑆𝑆1,t)we have z=𝑆𝑆1. This completes the proof.  
 
Corollary 3.2: Let (X, M*) be complete fuzzy metric space and let A, B, S and T be self mappings on X such that the 
following conditions are satisfied (i)-(iii) and theorem 3.1. there exist k∈(0,1) such that for ever x, y∈ X and t>0 
 
F(M(SX,TY,Kt)*M(AX,BY,t)*(M(SX,AX,t)*M(TY,NY,t)*M(SX,BY,t)*M(TY,AX,t) ≥ 1. 
 
Then A, B, S and T have a unique common fixed point in X. 
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