International Research Journal of Pure Algebra -3(6), 2013, 224-227

ON STRONG FUZZY GRAPHS AND PROPERTIES

D. Venugopalam ${ }^{1}$, N. Naga Maruthi Kumari ${ }^{2^{*}}$ and M. Vijaya Kumar ${ }^{3}$
${ }^{1}$ Govt. Pingle College, Waddepalli, Hanamkonda, India
${ }^{2}$ ATRIA Institute of Technology, Anand Nagar, Bangalore, India
${ }^{3}$ Department of Mathematics, Vaagdevi College of Engineering, Warangal, (A.P.), India

(Received on: 28-05-13; Revised \& Accepted on: 11-06-13)

Abstract

This paper discuss on strong fuzzy graphs and properties. The connectedness of isomorphic fuzzy graphs discussed. The image of strong of fuzzy graph under isomorphism, a weak isomorphism is also studied.

Key Words: Fuzzy relation, Fuzzy graphs, Strong Fuzzy graphs, Complement, Isomorphism.

1. INTRODUCTION

Rosenfeld (1975) introduced the notion of fuzzy graph and several fuzzy analogs of graph theoretic concepts, such as paths, cycles and connectedness. Fuzzy models are becoming useful because of their aim in reducing the difference between the traditional numerical models used in Engineering and Science and Symbolic models used in expert system. Bhattacharya (1987) and Bhutani (1987) investigated the concept of fuzzy automorphism groups. This paper discusses some properties of isomorphic fuzzy graphs with reference to strong arcs in fuzzy graphs, strong fuzzy graphs and also about complement of a fuzzy graph.

Definition 1.1: The $G=G_{1}\left[G_{2}\right]$ of two fuzzy graphs $G_{i}=\left(V_{i}, X_{i}\right)$ is defined [5] as a fuzzy graph $\left(\sigma_{1}\left[\sigma_{2}\right], \mu_{1}\left[\mu_{2}\right]\right)$ on G $=\left(V, X^{0}\right)$ where $V=V_{1} \times V_{2}, X^{0}=X U X^{\prime}$. Here X is as defined in Definition $1.5, X^{\prime}=\left\{\left(\left(u_{1}, w_{1}\right),\left(v_{1}, w_{2}\right)\right) \mid\left(u_{1}, v_{1}\right)\right.$ $\left.\in X_{1}, \mathrm{w}_{1} \neq \mathrm{w}_{2}\right\}$. Fuzzy sets $\sigma_{1}\left[\sigma_{2}\right]=\left(\sigma_{1} \times \sigma_{2}\right)$ on $\mathrm{V}_{1} \times \mathrm{V}_{2}$ and $\mu_{1}\left[\mu_{2}\right]=\mu_{1} \mathrm{x} \mu_{2}$ on X and on $\mathrm{X}^{\prime}, \mu_{1}\left[\mu_{2}\right]$ is defined as $\left.\mu_{1}\left[\mu_{2}\right]\left(\left(\mathrm{u}_{1}, \mathrm{w}_{1}\right), \mathrm{v}_{1}, \mathrm{w}_{2}\right)\right)=\mu_{1}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{w}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{w}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{w}_{2}\right)$.

Definition 1.2: The union $G=G_{1} U G_{2}$ of two fuzzy graphs $\mathrm{Gi}=(\mathrm{Vi}, \mathrm{Xi}), \mathrm{i}=1,2$ is defined [5] as a fuzzy graph ($\sigma_{1} \mathrm{U}$ $\left.\sigma_{2}, \mu_{1} U \mu_{2}\right)$ on $G=\left(V_{1} U V_{2}, X_{1} U X_{2}\right)$ as follows: $\left(\sigma_{1} U \sigma_{2}\right)(u)=\sigma_{1}(u)$ if $u \in V_{1} \backslash V_{2}=\sigma_{2}(u)$ if $u \in V_{2} \backslash V_{1}$, and ($\sigma_{1} U$ $\left.\sigma_{2}\right)(u)=\sigma_{1}(u) V \sigma_{2}(u)$ if $u \in V_{1} \bigcap V_{2}$. Also $\left(\mu_{1} U \mu_{2}\right)(u, v)=\mu_{1}(u, v)$ if $(u, v) \in X_{1} \backslash X_{2}=\mu_{2}(u, v)$ if $(u, v) \in X_{2} \backslash X_{1}$, and $\left(\mu_{1} U \mu_{2}\right)(u, v)=\mu_{1}(u, v) V \mu_{2}(u, v)$ if $(u, v) \in X_{1} \cap X_{2}$.

Definition 1.3: Let $G=G_{1}+G_{2}=\left(V_{1} U V_{2}, X_{1} U X_{2} U X^{\prime}\right)$ denote the join [5] of two fuzzy graph $G 1=\left(V_{1}, X_{1}\right)$ and $G_{2}=\left(V_{2}, X_{2}\right)$, where we assume that $V_{1} \bigcap V_{2}=\varnothing$ and X^{\prime} is the set of all edges joining vertices of V_{1} with the vertices of V_{2}. Define fuzzy sets $\sigma_{1}+\sigma_{2}$ of $V_{1} U V_{2}$ and $\mu_{1}+\mu_{2}$ of $X_{1} U X_{2} U X^{\prime}$ as follows: $\left(\sigma_{1}+\sigma_{2}\right)(u)=\sigma_{1} U \sigma_{2}(u) \forall u \in V_{1}$ $U V_{2} ;\left(\mu_{1}+\mu_{2}\right)(u, v)=\left(\mu_{1} U \mu_{2}\right)(u, v)$ if $(u, v) \in X_{1} U X_{2}$ and $\left(\mu_{1}+\mu_{2}\right)(u, v)=\sigma_{1}(u) \Lambda \sigma_{2}(v)$ if $(u, v) \in X^{\prime}$.

Definition 1.4: A fuzzy graph with S as the underlying set is a pair $G:(\sigma, \mu)$ where $\sigma: S \rightarrow[0,1]$ is a fuzzy subset, μ $: S \times S \rightarrow[0,1]$ is a fuzzy relation on the fuzzy subset σ, such that $\mu(x, y) \leq \sigma(x) \wedge \sigma(y)$ for all $x, y \in S$, where \wedge stands for minimum. The underlying crisp graph of the fuzzy graph $G:(\sigma, \mu)$ is denoted as $G^{*}:\left(\sigma^{*}, \mu^{*}\right)$ where $\sigma^{*}=\operatorname{supp}(\sigma)=$ $\{u \in S / \sigma(u)>0\}, \mu^{*}=\operatorname{supp}(\mu)=\{(u, v) \in S \times S / \mu(u, v)>0\}$.

Throughout this paper $G:(\sigma, \mu)$ and $G^{\prime}:\left(\sigma^{\prime}, \mu^{\prime}\right)$ are taken to be the fuzzy graphs with underlying sets S and S^{\prime} respectively.

Definition 1.5: A path ρ in a fuzzy graph $G:(\sigma, \mu)$ is a sequence of distinct nodes $v_{0}, v_{1}, v_{2}, \ldots, v_{n}$ such that $\mu\left(v_{i-1}, v_{i}\right)$ $>0,1 \leq \mathrm{i} \leq \mathrm{n}$. Here ' n ' is called the length of the path. The consecutive pairs $\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)$ are called arcs of the path.

[^0]
D. Venugopalam ${ }^{1}$, N. Naga Maruthi Kumari ${ }^{2}$ and M. Vijaya Kumar ${ }^{3}$ / ON STRONG FUZZY GRPAHS AND PROPERTIES/ RJPA- 3(6), June-2013.

Definition 1.6: If u, v are nodes in G and if they are connected by means of a path then the strength of that path is defined as $\widehat{i=1}_{n}^{n} \mu\left(v_{i-1}, v_{i}\right)$ i.e., it is the strength of the weakest arc. If u , v are connected by means of paths of length ' k ' then $\mu^{k}(u, v)$ is defined as $\mu^{k}(u, v)=\sup \left\{\mu\left(u, v_{1}\right) \wedge \mu\left(v_{1}, v_{2}\right) \wedge \mu\left(v_{2}, v_{3}\right) \ldots \wedge \mu\left(v_{k-1}, v\right) / u, v_{1}, v_{2}, \ldots . v_{k-1}, v \in S\right\}$. If $u, v \in S$ the strength of connectedness between u and v is $\mu^{\infty}(u, v)=\sup \left\{\mu^{k}(u, v) / k=1,2,3, \ldots\right\}$.

Definition 1.7: A fuzzy graph G is connected if $\mu^{\infty}(u, v)>0$ for all $u, v \in \sigma^{*}$.
Definition 1.8: A fuzzy graph G is said to be a strong fuzzy graph if $\mu(x, y)=\sigma(x) \wedge \sigma(y)$ for all (x, y) in μ^{*}.
Definition 1.9: A fuzzy graph G is said to be a complete fuzzy graph if $\mu(x, y)=\sigma(x) \wedge \sigma(y)$ for all x, y in σ^{*}.
Definition 1.10: An arc (x, y) is said to be a strong arc if $\mu(x, y) \geq \mu^{\infty}(x, y)$. A node x, is said to be an isolated node if $\mu(x, y)=0 \forall y \neq x$.

Definition 1.11: A homomorphism of fuzzy graphs $h: G \rightarrow G$ is a map $h: S \rightarrow S^{\prime}$ which satisfies $\sigma(x) \leq \sigma{ }^{\prime}(h(x))$ for all $x \in S$ and $\mu(x, y) \leq \mu^{\prime}(h(x), h(y))$ for all $x, y \in S$.

Definition 1.12: A weak isomorphism h: $\mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is a map, $\mathrm{h}: \mathrm{S} \rightarrow \mathrm{S}$ ' which is a bijective homomorphism that satisfies σ (x$)=\sigma^{\prime}(\mathrm{h}(\mathrm{x}))$ for all $\mathrm{x} \in \mathrm{S}$.

Definition 1.13: A co-weak isomorphism $h: G \rightarrow G^{\prime}$ is a map, $h: S \rightarrow S^{\prime}$ which is a bijective homomorphism that satisfies $\mu(x, y)=\mu^{\prime}(h(x), h(y))$ for all $x, y \in S$.

Definition 1.14: An isomorphism $h: G \rightarrow G^{\prime}$ is a map, $h: S \rightarrow S^{\prime}$ which is bijective that satisfies

$$
\sigma(\mathrm{x})=\sigma^{\prime}(\mathrm{h}(\mathrm{x})) \text { for all } \mathrm{x} \in \mathrm{~S} \text {. }
$$

$\mu(\mathrm{x}, \mathrm{y})=\mu^{\prime}(\mathrm{h}(\mathrm{x}), \mathrm{h}(\mathrm{y}))$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{S}$, and we denote $\mathrm{G} \cong \mathrm{G}^{\prime}$.
Definition 1.15: Let $G:(\sigma, \mu)$ be a fuzzy graph. The complement of G is defined as $\bar{G}:(\sigma, \bar{\mu})$ where $\bar{\mu}(x, y)=\sigma(x) \wedge \sigma(y)-\mu(x, y) \forall x, y \in S$. When G is a fuzzy graph, $\bar{G}:(\sigma, \bar{\mu})$ is also a fuzzy graph.

Definition 1.16: Given a fuzzy graph G : (σ, μ), with the underlying set S, the order of G is defined and denoted as $p=\sum_{x \in S} \sigma(x)$ and size of G is defined and denoted as $q=\sum_{x, y \in S} \mu(x, y)$.

2. MAIN RESULTS (STRONG FUZZY GRAPHS)

Theorem 2.1: If G is a connected, strong fuzzy graph then every arc in G is a strong arc.
Theorem 2.2: If G is to G^{\prime} then G is a strong fuzzy graph iff G^{\prime} is also a strong fuzzy graph.
Theorem 2.3: If G is co -weak with a strong fuzzy graph G ' then G is also a strong fuzzy graph.
Theorem 2.4: $\mathrm{G}:(\sigma, \mu)$ is a strong fuzzy graph iff $\mathrm{G}:(\sigma, \mu)$ is also a strong fuzzy graph.
Theorem 2.5: $\mathrm{G}:(\sigma, \mu)$ is a complete fuzzy graph iff $\mathrm{G}:(\sigma, \mu)$ is an isolated fuzzy graph.
Theorem 2.6: If G_{1} and G_{2} are strong fuzzy graphs, then $G_{1} \times G_{2}, G_{1}\left[G_{2}\right]$ and $G_{1}+G_{2}$ are also strong.

Proof: By Definition

$$
\begin{aligned}
&\left(\mu_{1} \times \mu_{2}\right)\left(\left(\mathrm{u}, \mathrm{u}_{2}\right)\left(\mathrm{u}, \mathrm{v}_{2}\right)\right)=\sigma_{1}(\mathrm{u}) \Lambda \mu_{2}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)=\sigma_{1}(\mathrm{u}) \Lambda \sigma_{2}\left(\mathrm{u}_{2}\right) \Lambda \sigma_{2}\left(\mathrm{v}_{2}\right) \\
&=\left(\left(\sigma_{1} \times \sigma_{2}\right)\left(\mathrm{u}, \mathrm{u}_{2}\right)\right) \Lambda\left(\left(\sigma_{1} \times \sigma_{2}\right)\left(\mathrm{u}, \mathrm{v}_{2}\right)\right) \\
& \mu_{1}\left[\mu_{2}\right]\left(\left(\mathrm{u}_{1}, \mathrm{w}_{1}\right),\left(\mathrm{v}_{1}, \mathrm{w}_{2}\right)\right)=\mu_{1}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{w}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{w}_{2}\right) \\
&=\sigma_{1}\left(\mathrm{u}_{1}\right) \Lambda \sigma_{1}\left(\mathrm{v}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{w}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{w}_{2}\right) \\
&=\left(\left(\sigma_{1} \times \sigma_{2}\right)\left(\mathrm{u}_{1}, \mathrm{w}_{1}\right)\right) \Lambda\left(\left(\sigma_{1} \times \sigma_{2}\right)\left(\mathrm{v}_{2}, \mathrm{w}_{2}\right)\right) \\
&\left(\mu_{1}+\mu_{2}\right)(\mathrm{u}, \mathrm{v})=\sigma_{1}(\mathrm{u}) \Lambda \sigma_{2}(\mathrm{v}) \text { on } \mathrm{X}^{\prime}
\end{aligned}
$$

All this shows that $G_{1} \times G_{2}, G_{1}\left[G_{2}\right]$ and $G_{1}+G_{2}$ are also strong fuzzy graph.
Definition 2.7: We say a fuzzy subgraph $\mathrm{H}=(\sigma, \tau)$ is a full spanning fuzzy subgraph of $G=(\sigma, \mu)$ on (V, X) if H is a spanning fuzzy subgraph of G and $\forall u, v \in V$ either $\tau(u, v)=0$ or $\tau(u, v)=\mu(u, v)$.

Theorem 2.8: If $G_{1} \times G_{2}$ is strong fuzzy graph, then at least G_{1} or G_{2} must be strong.
Proof: On the contrary, assume that both G_{1} and G_{2} are not strong fuzzy graphs. Then there exists at least one (u_{1}, $\left.\mathrm{v}_{1}\right) \in \mathrm{X}_{1}$ and at least one $\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right) \in \mathrm{X}_{1}$ such that
(i) $\mu\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)<\sigma_{1}\left(\mathrm{u}_{1}\right) \Lambda \sigma_{1}\left(\mathrm{v}_{1}\right)$ and $\mu_{2}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)<\sigma_{2}\left(\mathrm{u}_{2}\right) \Lambda \sigma_{2}\left(\mathrm{v}_{2}\right)$

Without loss of generality we can assume that
(ii) $\mu_{2}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) \leq \mu_{1}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)<\sigma_{1}\left(\mathrm{u}_{1}\right) \Lambda \sigma_{1}\left(\mathrm{v}_{1}\right) \leq \sigma_{1}\left(\mathrm{u}_{1}\right)$

Now consider $\left(\left(u_{1}, u_{2}\right)\left(u_{1}, v_{2}\right)\right) \in X$. By definition of $G_{1} \times G_{2}$ and inequality (i)
$\left(\mu_{1} \mathrm{x} \mu_{2}\right)\left(\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)\right)=\sigma_{1}\left(\mathrm{u}_{1}\right) \Lambda \mu_{2}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)<\sigma_{1}\left(\mathrm{u}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{u}_{2}\right) \Lambda \sigma_{2}\left(\mathrm{v}_{2}\right)$
and
$\left(\sigma_{1} \times \sigma_{2}\right)\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right), \sigma_{1}\left(\mathrm{u}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{u}_{2}\right)=\sigma_{1} \mathrm{x} \sigma_{2}\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)=\sigma_{1}\left(\mathrm{u}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{u}_{2}\right)$
Thus
$\left(\sigma_{1} \times \sigma_{2}\right)\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \Lambda\left(\sigma_{1} \times \sigma_{2}\right)\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)=\sigma_{1}\left(\mathrm{u}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{u}_{2}\right) \Lambda \sigma_{2}\left(\mathrm{v}_{2}\right)$
Hence

$$
\left(\mu_{1} \times \mu_{2}\right)\left(\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)\right)<\left(\sigma_{1} \times \sigma_{2}\right)\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \Lambda\left(\sigma_{1} \mathrm{x} \sigma_{2}\right)\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)
$$

That is, $G_{1} \times G_{2}$ is not strong fuzzy graph, a contradiction. Hence if $G_{1} \times G_{2}$ is strong, then at least G_{1} or G_{2} must be strong.

Corollary 2.9: If $G_{1}\left[G_{2}\right]$ is strong then at least G_{1} or G_{2} is strong.
Definition 2.10: Let (σ, μ) be a fuzzy subgraph of $G=(V, X)$. Denote by X^{*} the set of all $(u, v) \in X$ for which the strong property fails. That is, $(u, v) \in X^{*}$ if and only if $\mu(u, v)<\sigma(u) \Lambda \sigma(v)$.

Proposition 2.11: Let $\left(\sigma_{1}, \mu_{1}\right)$ be a strong fuzzy subgraph of $G_{1}=\left(V_{1}, X_{1}\right)$. Then for any fuzzy graph $\left(\sigma_{2}, \mu_{2}\right)$ of $G_{2}=$ $\left(V_{2}, X_{2}\right), G_{1} \times G_{2}$ is strong if and only if the following condition is satisfied: for all $u_{1} \in V_{1}$ and $\left(u_{2}, v_{2}\right) \in X_{2}^{*}, \sigma_{1}\left(u_{1}\right) \leq$ $\mu_{2}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)$.

Proof: Let $G_{1} \times G_{2}$ be strong. Then for $u_{1} \in V_{1}$, and $\left(u_{2}, v_{2}\right) \in X_{2},\left(\mu_{1} \times \mu_{2}\right)\left(\left(u_{1}, u_{2}\right),\left(u_{1}, v_{2}\right)\right)=\left(\sigma_{1} \times \sigma_{2}\right)\left(u_{1}, u_{2}\right) \Lambda\left(\sigma_{1} x\right.$ $\left.\sigma_{2}\right)\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)=\sigma_{1}\left(\mathrm{u}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{u}_{2}\right) \Lambda\left(\mathrm{v}_{2}\right)$.

By definition, $\left(\mu_{1} \times \mu_{2}\right)\left(\left(u_{1}, u_{2}\right),\left(u_{1}, v_{2}\right)\right)=\sigma_{1}\left(u_{1}\right) \Lambda \mu_{2}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)$. Hence
(i) $\quad \sigma_{1}\left(\mathrm{u}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{u}_{2}\right) \Lambda\left(\mathrm{v}_{2}\right)=\sigma_{1}\left(\mathrm{u}_{1}\right) \Lambda \mu_{2}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)$

If $\left(u_{2}, v_{2}\right) \in X^{*}$, then we have
(ii) $\quad \mu_{2}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)<\sigma_{2}\left(\mathrm{u}_{2}\right) \Lambda \sigma_{2}\left(\mathrm{v}_{2}\right)$

From (i) and (ii) it follows that $\sigma_{1}\left(\mathrm{u}_{1}\right) \leq \mu_{2}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) .(\leftarrow)$ Conversely, assume $\sigma_{1}\left(\mathrm{u}_{1}\right) \leq \mu_{2}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)$ for all $\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) \in \mathrm{X}_{2}{ }^{*}$ and $u_{1} \in V_{1}$. We want to show that $G_{1} \times G_{2}$ is strong.

Note, $\mu_{2}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)<\sigma_{2}\left(\mathrm{u}_{2}\right) \Lambda \sigma_{2}\left(\mathrm{v}_{2}\right)$ and so $\sigma_{1}\left(\mathrm{u}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{u}_{2}\right) \Lambda \sigma_{2}\left(\mathrm{v}_{2}\right)=\sigma_{1}\left(\mathrm{u}_{1}\right) \Lambda \mu_{2}\left(\mathrm{u}_{2} \mathrm{v}_{2}\right)$ for all (u, v) $\in \mathrm{X}_{2}{ }^{*}$. For any other $\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) \in \mathrm{X}_{2}, \mu_{2}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)=\sigma_{2}\left(\mathrm{u}_{2}\right) \Lambda \sigma_{2}\left(\mathrm{v}_{2}\right)$ and so

$$
\begin{aligned}
\left(\mu_{1} \times \mu_{2}\right)\left(\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)\right) & =\sigma_{1}\left(\mathrm{u}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{u}_{2}\right) \Lambda \sigma_{2}\left(\mathrm{v}_{2}\right) \\
& =\left(\sigma_{1} \times \sigma_{2}\right)\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right) \Lambda\left(\sigma_{1} \times \sigma_{2}\right)\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)
\end{aligned}
$$

This shows $\left(\mu_{1} \times \mu_{2}\right)\left(\left(u_{1}, u_{2}\right),\left(u_{1}, v_{2}\right)\right)=\left(\sigma_{1} \times \sigma_{2}\right)\left(u_{1}, u_{2}\right) \Lambda\left(\sigma_{1} \times \sigma_{2}\right)\left(u_{1}, v_{2}\right)$. If $\left(u_{1}, v_{1}\right) \in X_{1}$ and $u_{2} \in V_{2}$ then from the given condition that G_{1} is strong it follows that $\left(\mu_{1} \mathrm{x} \mu_{2}\right)\left(\left(\mathrm{u}_{1}, \mathrm{u}_{2}\left(\mathrm{v}_{1}, \mathrm{u}_{2}\right)\right)=\mu_{1}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right) \Lambda \sigma_{2}\left(\mathrm{u}_{2}\right)=\left(\sigma_{1} \mathrm{x} \sigma_{2}\right) \mathrm{x}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \Lambda\left(\sigma_{1}\right.\right.$ $\left.\mathrm{x} \sigma_{2}\right)\left(\mathrm{v}_{1}, \mathrm{u}_{2}\right)$. All this shows that $\mathrm{G}_{1} \times \mathrm{G}_{2}$ is also strong fuzzy graph. Hence the result.

D. Venugopalam ${ }^{1}$, N. Naga Maruthi Kumari ${ }^{2^{*}}$ and M. Vijaya Kumar ${ }^{3}$ / ON STRONG FUZZY GRPAHS AND PROPERTIES/ RJPA- 3(6), June-2013.

Theorem 2.12: $G=G^{c^{c}}$ if and only if G is a strong fuzzy graph.
Theorem 2.13: Let $\left(\sigma_{i}, \mu_{\mathrm{i}}\right)$ be a fuzzy subgraph of $\mathrm{G}_{\mathrm{i}}=\left(\mathrm{V}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}}\right)$ for $\mathrm{i}=1$, 2. Then the following are true:
(a) $G=G^{c^{c}}$
(b) $G_{i}^{c}=\left(G_{i}^{c^{c}}\right)^{c}$
(c) If $G_{1} \subseteq G_{2}$, then $G_{1}^{c^{c}} \subseteq G_{2}^{c^{c}}$

Theorem 2.14: $G^{c^{c}}$ is the smallest strong fuzzy graph that contains $G=(\mathrm{V}, \mathrm{X})$. That is, if ($\sigma^{\prime}, \mu^{\prime}$) is a strong fuzzy subgraph of $\mathrm{H}=\left(\mathrm{V}^{\prime}, \mathrm{X}^{\prime}\right)$ such that $G \subseteq H$, then $G^{c^{c}} \subseteq H$.

REFERENCES

[1] P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognition Letters 6 (1987) 297-302.
[2] K.R. Bhutani, On automorphisms of fuzzy graphs, Pattern Recognition Letters 9 (1987) 159-162.
[3] K.R. Bhutani, A. Rosenfeld, Strong arcs in fuzzy graphs, Information Sciences 152(2 003) 319-322.
[4] J.N. Mordeson, P.S. Nair, Fuzzy Graphs and Fuzzy Hypergraphs, Physica-Verlag, Heidelberg, 2000.
[5] J.N. Mordeson, C.-S. Peng, Operations on fuzzy graphs, Information Sciences 79 (1994) 159-170.
[6] J.N. Mordeson, Fuzzy line graphs, Pattern Recognition Letters 14 (1993) 381-384.
[7] A. Rosenfeld, Fuzzy graphs, in: L.A. Zadeh, K.S. Fu, K. Tanaka, M. Shimura (Eds.), Fuzzy Sets and Their Applications to Cognitive and Decision Processes, Academic Press, New York, 1975, pp. 77-95.

Source of support: Nil, Conflict of interest: None Declared

[^0]: * Corresponding author: N. Naga Maruthi Kumari ${ }^{2}$

 ATRIA Institute of Technology, Ananad Nagar, Bangalore, India

