ON SEMI-HOMEOMORPHISMS

K. Chandra Sekhara Rao*

Srinivasa Ramanujan Centre, SASTRA University, Kumbakonam, India

(Received on: 10-05-13; Revised & Accepted on: 03-06-13)

ABSTRACT

Properties of semi-homeomorphisms, semi compact spaces are discussed.

Subject classification: 54-06, 54G12.

Keywords: Semi-homeomorphism, irresolute mapping, semi pre open mapping.

INTRODUCTION

In this section, we recall some definitions

A set A is said to be semi – open if there exists an open set G such that

 $G \subset A \subset cl G$ or $A \subset cl$ int A, The set A is semi-closed if int $cl A \subset A$

A function $f: X \to A$ is said to be irresolute if $f^{-1}(A)$ is a semi-open set whenever A is a semi open set in Y. The function f is called a pre semi open function if f(A) is a semi open set whenever A is a semi – open set.

A bijection $f: X \to Y$ is a semi-homeomorphism if f is irresolute and pre-semi-open. A space X is said to be semi-compact if every cover of X by semi-open sets has a finite sub-cover.

MAIN RESULTS

Theorem 1: Let $f: X \to Y$ be a bijection. Then f is semi pre open if and only if $f^{-1}: Y \to X$ is irresolute.

Proof:

Step - 1: suppose that the bijection f^- is semi pre open then f^{-1} is a function from Y to X

Let U be a semi open set in X. Then f(U) is a semi open set in Y. But $f(U) = (f^{-1})^{-1}(U)$. Hence $(f^{-1})^{-1}(U)$ is a semi open set in Y. Put $g = f^{-1}$. We have $g^{-1}(U)$ is semi open.

Consequently g is irresolute. That is, f^{-1} is irresolute.

Step – 2: suppose that f is irresolute let U be a semi open set in X. Then $(f^{-1})^{-1}(U)$ is a semi open set in Y. But $(f^{-1})^{-1}(U) = f(U)$ Therefore f(U) is a semi open set in Y. Hence f is pre semi open.

Theorem 2: If $f: X \to Y$ and $g: Y \to Z$ are both irresolute, than their composition $g \circ f: X \to Z$ is an irresolute map.

Proof: Let V be and semi open set in Z. Then

$$(g \circ f)^{-1}(V) = (f^{-1} \circ g^{-1}(V))$$

= $(f^{-1}(g^{-1}(V)))$

Since g is irresolute, it follows that $g^{-1}(V)$ is a semi open set. Since f is irresolute, it follows that $(f^{-1}(g^{-1}(V)))$ is a semi open set. Thus for each semi open set V in Z, $(g \circ f)^{-1}(V)$ is semi open in X. Therefore, $g \circ f$ is an irresolute function.

Theorem 3: Semi-homeomorphism is an equivalence relation. We write $X \sim Y$ whenever two spaces X, Y are semi-homeomorphic.

Proof:

Step – 1: Let $i: X \to X$ be the identity map on X. Then it is bijective and irresolute. Also (i)⁻ⁱ is a pre semi open map. Hence i is a semi-homeomorphism. Accordingly $X \sim X$. The relation is reflexive.

Step – 2: Suppose that $X \sim Y$. Then there exists a semi-homeomorphism $h: X \to Y$ But then h is bijective. Accordingly $h^{-1}: Y \to X$ is bijective. Also h is irresolute. Hence h^{-1} is a pre semi open map; Hence $Y \sim X$.

Step – 3: Suppose that $X \sim Y$ and $Y \sim Z$. Then there is a semi-homeomorphism. $f: X \to Y$ and there is a semi-homeomorphism g from Y to Z. But then f and g are bijective. Accordingly $g \circ f$ is bijective and pre semi open. Thus $g \circ f$ is semi-homeomorphism. Therefore $X \sim Z$. Hence \sim is transitive. From step (1) (2) and (3) semi-homeomorphism is an equivalence relation.

Theorem 4: Every semi-compact subset of a Hausdorff space is semiclosed.

Proof: Suppose that A be a semi compact subset of a Hausdorff space X. Let $x \in X - A$. Then there are disjoint semi open sets U_x and V_x such that $x \in U_x$ and $A \subset V_x$. But then $X \in U_x \subset X - V_x \subset X - A$. Therefore X-A is semi open. Hence A is semi-closed in Y.

Theorem 5: Let X be semi-compact and set Y be a Hausdorff space. If $f: X \to Y$ is continuous irresolute and bijective, then f is a semi-homeomorphism.

Proof: Let A be a semi-closed subset of the semi compact space X. Then A is semi-compact. But f is irresolute. Hence f(A) is semi compact. Take $g = f^{-1}$. Then $g^{-1}(A)$ is semi closed, by theorem 3. Consequently g is an irresolute map. That is, f^{-1} is irresolute. Therefore f is a semi-homeomorphism.

REFERENCE

- 1. Miguel Caldas, More on generalized homeomorphisms in topological spaces, divatgaciones Matematic. 9(1), (2001), 55-63.
- 2. D. Andrijevic, Semi-preopen sets, Mat. Vesnik.38 (1986) 24-32.
- 3. D. Sivaraj, Semi-homeomorphisms, Ann Math. Hung. 48(1986), 139-145.

Source of support: Nil, Conflict of interest: None Declared