

A STUDY ON THE DEGREE OF APPROXIMATION OF FUNCTION BY ALMOST MATRIX MEANS OF THE CONJUGATE FOURIER SERIES

S. K. Tiwari & D. K. Bhatt*

School of Studies in Mathematics, Vikram University, Ujjain (M.P.), India

(Received on: 27-04-13; Revised & Accepted on: 05-06-13)

ABSTRACT

In the present paper, we obtained the degree of approximation of functions belonging to weighted $W(L^r, \xi(t)), r \ge 1$, class by almost infinite regular triangular matrix means of a conjugate Fourier series.

1. INTRODUCTION

Let f(x) be the periodic function with period 2π and integrable in the Lebesgue sense. The Fourier series of f(x) is given by

$$f \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} A_n(x).$$
(1.1)

With partial sums $s_n(f; x)$.

The conjugate series of the Fourier series (1.1) is given by

$$\sum_{n=1}^{\infty} (b_n \cos nx + a_n \sin nx) = \sum_{n=1}^{\infty} B_n(x).$$
(1.2)

 $L\infty$ _norm of a function $f: R \rightarrow R$ is defined by

$$\|f\|_{\infty} = \sup\{|f(x)|: x \in R\}.$$
(1.3)

 L_r = norm of a function is defined by

$$\|f\|_{r} = \left(\int_{0}^{2\pi} |f(x)|^{r} dx\right)^{1/r}, r \ge 1.$$
(1.4)

The degree of approximation of a function $f: R \to R$ by a trigonometric polynomial t_n of order n under norm $\| \cdot \|_{\infty}$ is defined by

$$|| t_n - f ||_{\infty} = \sup\{|t_n(x) - f(x)|: x \in R\}.$$
(1.5)

and $E_n(f)$ of a function $f \in L_r$ is given by

$$E_n(f) = \min \|t_n - f\|_r.$$
 (1.6)

A function $f \in Lip \alpha$ if

$$|f(x+t) - f(x)| = 0(|t|^{\alpha}) \text{ for } 0 < \alpha \le 1$$
(1.7)

$$f(x) \in Lip(\alpha, r)$$
, if

$$\left(\int_0^{2\pi} |f(x+t) - f(x)|^r dx\right)^{\frac{1}{r}} = 0(|t|^{\alpha}), 0 < \alpha \le 1, r \ge 1.$$
(1.8)

Given a positive increasing function $\xi(t)$ and an integer $r \ge 1$ $f \in \text{Lip}(\xi(t), \eta)$ if

$$\left(\int_0^{2\pi} |f(x+t) - f(x)|^r dx\right)^{1/r} = O(\xi(t))$$
(1.9)

International Research Journal of Pure Algebra-Vol.-3(6), June – 2013

and that $f \in W(L_r, \xi(t))$, if

$$\left(\int_0^{2\pi} \left| \{f(x+t) - f(x)\} \sin^\beta x \right|^r dx \right)^{1/r} = 0(\xi(t)), \beta \ge 0 \ r \ge 1.$$
(1.10)

In case $\beta=0$ we find that $W(L_r, \xi(t))$, reduces to the class Lip $(\xi(t), \eta)$ and if $\xi(t) = t^{\alpha}$ then Lip $(\xi(t), \eta)$ class reduces to the class Lip (α, r) and if $r \to \infty$ then Lip (α, r) class reduces to the class Lip α .

We observe that

$$W(L_r,\xi(t)) \xrightarrow{\beta=0} \operatorname{Lip}(\xi(t),r) \xrightarrow{\xi(t)=t^{\alpha}} \operatorname{Lip}(\alpha,r) \xrightarrow{r\to\infty} \operatorname{Lip}\alpha.$$

Let $\sum_{n=0}^{\infty} u_n$ be a given infinite series with sequence of its *nth* partial sums $\{s_n\}$, then the bounded sequence $\{S_n\}$ is said to be almost convergent to a limit S (see Lorenz [3]), if

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=p}^{n+p} s_k \to S \tag{1.11}$$

Uniformly with respect to p.

Let $\Lambda_{n,k} = (a_{n,k})$ be an infinite regular triangular matrix satisfying the Silverman-TÖeplitz [9] condition of regularity, such that

(1)
$$\sum_{k=0}^{n} \Lambda_{n,k} \to 1 \text{ as } n \to \infty.$$

(2)
$$\Lambda_{n,k} = 0 \text{ ; for all } k > n.$$

(3)
$$\sum_{k=0}^{n} |\Lambda_{n,k}| \le M \text{ where M is a finite constant.}$$

A series $\sum_{n=0}^{\infty} u_n$ with the sequence of partial sums $\{s_n\}$ is said to be almost Matrix summable to S, Provided.

$$\Lambda_{n,m} = \sum_{k=0}^{n} \Lambda_{n,k} \, s_{k,m} \to S \text{ as } n \to \infty.$$

Uniformly with respect to m, where

$$s_{k,m} = \frac{1}{k+1} \sum_{v=m}^{k+m} s_v.$$

and $(a_{n,k})$ is an infinite regular triangular matrix such that the element $a_{n,k}$ is non-negative, non-decreasing with k, so that for every

$$\left|\sum_{k=0}^{n} \Lambda_{n,k}\right| = 0(1)$$

We shall use following notations:

1.
$$\phi(t) = f(x + t) + f(x - t) - 2f(x)$$

2. $\overline{\Lambda}_{n}^{t} = \frac{1}{2\pi} \left| \sum_{k=0}^{n} \frac{a_{n,n-k}}{(k+1)} \frac{\cos(k+2m+1)\frac{t}{2}\sin(k+1)\frac{t}{2}}{\sin^{2}t/2} \right|$

2. PREVIOUS RESULTS

The concept of almost convergence introduced by Lorentz[3] in 1948. Till now the concept of almost convergence have been studied by several researchers like Mazhar, S.M. and Siddiqui[4], Qureshi[6] and Lal[2] etc. The purpose of this paper is to obtain a new theorem on the degree of approximation using the concept of almost matrix mean. Our object of this paper is to prove the following:

3. MAIN THEOREM

Let $\Lambda_{n,m} = (a_{n,m})$ bean infinite regular triangular matrix such that the element $(a_{n,m})$ is non-negative, non-decreasing with k, so that for every n,

$$\left|\sum_{m=0}^{n} \Lambda_{n,m}\right| = 0(1) \tag{3.1}$$

If a function \overline{f} , conjugate to a 2π -periodic function f on $[0, 2\pi]$ and belongs to the weighted $W(L_r, \xi(t))$ class, $r \ge 1$, then its degree of approximation by almost infinite regular triangular matrix means of its conjugate Fourier series(1.2) is given by

$$\left\|\overline{\Lambda}_{n,m}(x) - \overline{f}(x)\right\|_{r} = 0\left((n+m)^{\beta+\frac{1}{r}}\xi\left(\frac{1}{n+m}\right)\right).$$
(3.2)

Provided $\xi(t)$ satisfies the following conditions:

$$\left\{\frac{\xi(t)}{t}\right\} be \ a \ decreasing \ sequence, \tag{3.3}$$

$$\left[\int_{0}^{1/n+m} \left\{\frac{t|\phi(t)|}{\xi(t)} \sin^{\beta} t\right\}^{r} dt\right]^{1/r} = 0\left(\frac{1}{n+m}\right),\tag{3.4}$$

and

$$\left[\int_{1/n+m}^{\pi} \left\{\frac{t^{-\delta}|\phi(t)|}{\xi(t)} \sin^{\beta}t\right\}^{r} dt\right]^{1/r} = 0((n+m)^{\delta})$$
(3.5)

where δ is an arbitrary number such that $s(1 - \delta) - 1 > 0$, $\frac{1}{r} + \frac{1}{s} = 1$, $1 \le r \le \infty$, both (3.4) and (3.5) conditions hold uniformly in x, and $\overline{\Lambda}_{n,m}$ is almost infinite regular triangular matrix means of the conjugate Fourier series (1.2).

4. LEMMAS

For the proof of the theorem, we shall require the fallowing lemma:

Lemma 4.1: For
$$0 \le t \le \frac{1}{n+m}$$
; $|\overline{\Lambda}_n^t| = 0\left(\frac{1}{t}\right)$.

Proof: We have,

$$\overline{\Lambda}_{n}^{t} = \frac{1}{2\pi} \left| \sum_{k=0}^{n} \frac{a_{n,n-k}}{(k+1)} \frac{\cos(k+2m+1)\frac{t}{2}\sin(k+1)\frac{t}{2}}{\sin^{2}t/2} \right|^{2}$$

Since $|cosnt| \le 1$ and $\sin t/2 \ge t/\pi$, for $0 \le t \le \frac{1}{n+m}$

$$\leq \left| \frac{1}{2\pi} \sum_{k=0}^{n} \frac{a_{n,n-k}}{(k+1)} \left\{ (k+1) \frac{1}{\frac{t}{\pi}} \right\} \right|$$
$$= \frac{1}{2t} \left| \sum_{k=0}^{n} a_{n,n-k} \right|$$
$$= 0 \left(\frac{1}{t} \right) \qquad (since \left| \sum_{k=0}^{n} a_{n,n-k} \right| = 0(1))$$

Lemma 4.2: For $\frac{1}{n+m} \le t \le \pi$; $|\overline{\Lambda}_n^t| = 0\left(\frac{1}{t}\right)$.

Proof: We have,

$$\overline{\Lambda}_{n}^{t} = \frac{1}{2\pi} \left| \sum_{k=0}^{n} \frac{a_{n,n-k}}{(k+1)} \frac{\cos(k+2m+1)\frac{t}{2}\sin(k+1)\frac{t}{2}}{\sin^{2}t/2} \right|$$

© 2013, RJPA. All Rights Reserved

Using Jordan's lemma, $\sin t/2 \ge t/\pi$, $sinnt \le 1$ and $|cosnt| \le 1$, we have

$$\leq \frac{1}{2\pi} \left| \sum_{k=0}^{n} \frac{a_{n,n-k}}{(k+1)} \right| \left\{ \frac{\left| \cos(2k+1)\frac{t}{2} \right| \left| \sin(k+1)\frac{t}{2} \right|}{\left| \sin^{2}\frac{t}{2} \right|} \right\}$$
$$= 0 \left[\frac{1}{2t} \left| \sum_{k=0}^{n} a_{n,n-k} \right| \right]$$
$$= 0 \left(\frac{1}{t} \right) \qquad ; \left(since \left| \sum_{k=0}^{n} a_{n,n-k} \right| = 0(1) \right)$$

4. PROOF OF THE MAIN THEOREM

Let $\overline{s_n}(f; x)$ denote the nth partial sum of conjugate Fourier series (1.2) at t = x, then the following Qureshi[6], we have

$$\overline{s_n}(f;x) - \bar{f}(x) = -\frac{1}{\pi} \int_0^{\pi} \phi(t) \frac{\cos(n+1/2)t}{2\sin t/2} dt$$

Therefore,

$$\bar{s}_{k,m}(f;x) - \bar{f}(x) = \frac{1}{k+1} \sum_{v=m}^{k+m} \{ \bar{s}_v(f;x) - \bar{f}(x) \}$$
$$= -\frac{1}{\pi(k+1)} \int_0^{\pi} \phi(t) \sum_{v=m}^{k+m} \frac{\cos(v+1/2)t}{2\sin t/2} dt$$
$$= \frac{1}{2\pi(k+1)} \int_0^{\pi} \phi(t) \frac{\sinh t - \sin(k+1)t}{2\sin^2 t/2} dt$$

Therefore using, (1.2) the almost infinite regular triangular matrix transform of $\overline{s_n}(f; x)$ is given by

$$\overline{\Lambda}_{n,m}(x) - \overline{f}(x) = \sum_{k=0}^{n} a_{n,k} \{ \overline{s}_{k,m}(f;x) - \overline{f}(x) \}$$

$$\overline{\Lambda}_{n,m}(x) - \overline{f}(x) = \frac{1}{2\pi} \int_{0}^{\pi} \phi(t) \sum_{k=0}^{n} \frac{a_{n,n-k}}{(k+1)} \frac{sinkt - sin(k+1)t}{2sin^{2}t/2} dt$$

Therefore

$$\begin{split} |\bar{\Lambda}_{n,m}(x) - \bar{f}(x)| &\leq \frac{1}{2\pi} \int_{0}^{\pi} |\phi(t)| \left| \sum_{k=0}^{n} \frac{a_{n,n-k}}{(k+1)} \frac{\cos(k+2m+1)\frac{t}{2}\sin(k+1)\frac{t}{2}}{\sin^{2}t/2} \right| dt \\ &= \int_{0}^{\pi} |\phi(t)| |\bar{\Lambda}_{n}^{t}| dt \\ &= \int_{0}^{\frac{1}{n+m}} |\phi(t)| |\bar{\Lambda}_{n}^{t}| dt + \int_{\frac{1}{n+m}}^{\pi} |\phi(t)| |\bar{\Lambda}_{n}^{t}| dt \\ &= I_{1} + I_{2} \quad (say) \end{split}$$

Let us consider I_1 first,

$$|I_1| = \int_{0}^{\frac{1}{n+m}} |\phi(t)| |\overline{\Lambda}_n^t| dt$$

© 2013, RJPA. All Rights Reserved

(5.1)

Using Hölder's inequality and in view of $(sint)^{-1} \le \frac{\pi}{t}$, $sint \ge \frac{2t}{\pi}$, we have

$$= \left[\int_{0}^{\frac{1}{n+m}} \left\{\frac{t|\phi(t)|}{\xi(t)} \sin^{\beta}t\right\}^{r} dt\right]^{1/r} \left[\int_{0}^{\frac{1}{n+m}} \left\{\frac{\xi(t)|\overline{\Lambda}_{n}^{t}|}{t\sin^{\beta}t}\right\}^{s} dt\right]^{1/s}$$
$$= O\left(\frac{1}{n+m}\right) \left[\int_{0}^{\frac{1}{n+m}} \left\{\frac{\xi(t)}{t^{1+1+\beta}}\right\}^{s} dt\right]^{1/s} \qquad (By \ Lemma \ 4.1)$$

Since $\xi(t)$ is a positive increasing function and using second mean value theorem, for integrals, for $0 < \epsilon < \frac{1}{n+1}$

$$= 0\left\{ \left(\frac{1}{n+m}\right) \xi\left(\frac{1}{n+m}\right) \right\} \left[\int_{\epsilon}^{\frac{1}{n+m}} t^{-(\beta+2)s} dt \right]^{1/s}$$

$$= 0\left(\xi\left(\frac{1}{n+m}\right) \right) \left[\frac{t^{-(\beta+2)+1/s}}{t^{-(\beta+2)+1/s}} \right]_{\epsilon}^{\frac{1}{n+m}}$$

$$= 0\left\{ \xi\left(\frac{1}{n+m}\right) (n+m)^{\beta+1-1/s} \right\} \qquad \left(since \frac{1}{r} + \frac{1}{s} = 1 \right)$$

$$= 0\left\{ (n+m)^{\beta+1/r} \xi\left(\frac{1}{n+m}\right) \right\}$$
(5.2)

Now consider I_2 ,

$$|I_2| = \int_{\frac{1}{n+m}}^{\pi} |\phi(t)| |\overline{\Lambda}_n^t| dt dt$$

Again, using Hölder's inequality and second mean value theorem for integrals, since $|sint| \le 1$, $sint \ge \frac{2t}{\pi}$, with conditions (2.2) and (2.4), we have

$$\begin{aligned} |I_{2}| &= \left[\int_{\frac{1}{n+m}}^{\pi} \left\{ \frac{t^{-\delta} |\phi(t)|}{\xi(t)} \sin^{\beta} t \right\}^{r} dt \right]^{1/r} \left[\int_{\frac{1}{n+m}}^{\pi} \left\{ \frac{\xi(t) |\overline{\Lambda}_{n}^{t}|}{t^{-\delta} \sin^{\beta} t} \right\}^{s} dt \right]^{1/s} \\ &= 0\{(n+m)^{\delta}\} \left[\int_{1/n+m}^{\pi} \left\{ \frac{\xi(t)}{t^{1-\delta+\beta}} \right\}^{s} dt \right]^{1/s} \qquad (by \ lemma 4.2) \end{aligned}$$

$$\begin{aligned} \text{Now put } & \left(t = \frac{1}{y}\right) \\ &= 0\{(n+m)^{\delta}\} \left[\int_{1/\pi}^{n+m} \left\{\frac{\xi\left(\frac{1}{y}\right)}{y^{\delta-\beta-1}}\right\}^{s} \frac{dy}{y^{2}}\right]^{1/s} \\ &= 0\left\{(n+m)^{\delta}\xi\left(\frac{1}{n+m}\right)\right\} \left[\int_{1}^{n+m} \left\{\frac{dy}{y^{s(\delta-\beta-1)+2}}\right\}\right]^{1/s} \left(\text{for } \frac{1}{\pi} \le 1 \le (n+m)\right) \end{aligned}$$

© 2013, RJPA. All Rights Reserved

$$= 0 \left\{ (n+m)^{\delta} \xi \left(\frac{1}{n+m} \right) \right\} \left[\left\{ \frac{y^{s(1+\beta-\delta)-1}}{s(1+\beta-\delta)-1} \right\}_{1}^{n+m} \right]^{1/s}$$
$$= 0 \left\{ (n+m)^{\delta} \xi \left(\frac{1}{n+m} \right) \right\} \left[(n+m)^{1+\beta-\delta-\frac{1}{s}} \right]$$
$$= 0 \left\{ \xi \left(\frac{1}{n+m} \right) (n+m)^{\beta+1-\frac{1}{s}} \right\}$$
$$= 0 \left\{ (n+m)^{\beta+\frac{1}{r}} \xi \left(\frac{1}{n+m} \right) \right\}; \left(since \frac{1}{r} + \frac{1}{s} = 1 \right)$$

Combining (5.1), (5.2) and (5.3), we get

$$\left|\overline{\Lambda}_{n,m}(x) - \overline{f}(x)\right| = 0\left\{(n+m)^{\beta+\frac{1}{r}}\xi\left(\frac{1}{n+m}\right)\right\}$$

Now, using L_r -norm, we get

$$\begin{split} \left\| \bar{\Lambda}_{n,m}(x) - \bar{f}(x) \right\|_{r} &= \left\{ \int_{0}^{2\pi} \left| \bar{\Lambda}_{n,m}(x) - \bar{f}(x) \right|^{r} dx \right\}^{\overline{r}} \\ &= 0 \left\{ (n+m)^{\beta + \frac{1}{r}} \xi \left(\frac{1}{n+m} \right) \right\} \left\{ \int_{0}^{2\pi} dx \right\}^{\overline{r}} \\ &= 0 \left\{ (n+m)^{\beta + \frac{1}{r}} \xi \left(\frac{1}{n+m} \right) \right\} \end{split}$$

This completes the proof of the theorem.

6. COROLLARIES

Corollary 6.1: If In case $\beta=0$ and $\xi(t) = t^{\alpha}$, $0 < \alpha \le 1$, $W(L_r, \xi(t))$, reduces to the class $\text{Lip}(\xi(t), \eta)$, and the degree of approximation of a function $f \in \text{Lip}(\alpha, r), \frac{1}{r} < \alpha < 1$ is given by

1

$$\left\|\overline{\Lambda}_{n,m}(x) - \overline{f}(x)\right\|_{r} = 0\left\{\frac{1}{(n+m)^{\alpha-\frac{1}{r}}}\right\}.$$

Corollary 6.2: If $r \to \infty$, in, Corollary 6.1, then, $Lip(\alpha, r)$, reduces to the class *Lip* α , and the degree of approximation of a function $f \in Lip \alpha$, for $0 < \alpha < 1$ is given by

$$\|\overline{\Lambda}_{n,m}(x)-\overline{f}(x)\|_{\infty} = 0\left\{\frac{1}{(n+m)^{\alpha}}\right\}.$$

REFERENCES

- 1. Hardy, G.H., Divergent series, Oxford University Press, London, (1949) 1-70.
- Lal, S., The degree of approximation of conjugate of almost Lipschitz functions by (C,1)(E,1) means, Bull. Cal. Math. Soc., 91, (2) (1999), 145-148.
- 3. Lorentz, G.G., A contribution to the theory of divergent series, Acta. Math., 80, (1948), 167-190.
- Mazhar, S.M. and Siddiqui, A.H., On almost summability of a trigonometrical sequence. Act. Math. Acad. Sci., (1-z), (1961) (20-21).
- 5. Qureshi, K., On degree of approximation of a functions belonging to the class Lipα, Vol-13, Indian Jour. of Pure and Appl. Math. India, (1982) 898-903.

© 2013, RJPA. All Rights Reserved

(5.3)

- 6. Qureshi, K., On degree of approximation of a periodic function f by almost Riesz means of its conjugate series, Indian Jour. of Pure and Appl. Math., 13(10), (1982) 1136-1139.
- Sharma, P.L., Dixit, S.S., and Shukla, Y.B., On almost Borel summability of Fourier series, Tamkang Jour. of Math. Soc., 8(1), (1977) 61-65.
- 8. Titchmarch, E.C., Theory of functions, Second Edition, Oxford University Press, London (1939).
- 9. Töeplitz, O., Ubèr Allgemeine Linease Mittel bil dunger, Prace Mat., fiz-22, (1913) 113-119.
- 10. Zygmund, A., Trigonometric series, 2nd Rev., Cambridge University Press, Cambridge (1968).

Source of support: Nil, Conflict of interest: None Declared