Research Journal of Pure Algebra -3(4), 2013, Page: 163-181
 Available online through www.rjpa.info ISSN 2248-9037

SYMMETRIC KNOT GRAPH

M. Kamaraj ${ }^{1}$ \& R. Mangyarkarasi ${ }^{\mathbf{2}^{*}}$
${ }^{1}$ Government Arts College, Melur-625 106, Maduraidt, Tamilnadu, India
${ }^{2}$ E. M. G Yadava Women's College, Madurai 625 014, Tamil nadu, India

(Received on: 25-02-13; Revised \& Accepted on: 02-04-13)

Abstract

In this paper we introduce the Symmetric Knot Graph and their generators. We multiply the generators of Symmetric Knot graphs and prove the associative property.

INTRODUCTION

We introduced Symmetric Knot Graphs which have one to one correspondence between generators of Knot Symmetric Algebras. There is a multiplication among brauer diagrams. Brauer's algebras have been introduced by Brauer in connection with the decomposition problem of tensor product representation of $\mathrm{O}(\mathrm{n})$ and $\mathrm{sp}(2 \mathrm{n})$ into irreducible ones. There is a multiplication among brauer diagrams. The multiplication among Brauer graphs motivated us to define multiplication among Symmetric Knot graphs. In this chapter we define multiplication between two symmetric Knot graphs.

3.1 PRELIMINARIES

we define Symmetric Knot graphs using Knot theory. Let S_{n} denote a symmetric group of order n. Let $\pi \epsilon S_{n}$ then π can be represented as a graph in which the vertices of π are represented in two rows such that each row contains n vertices. The vertices of each row is indexed with $1,2, \ldots n$ from left to right in order. Let $\mathrm{E}(\pi)$ denote the set of all edges of π
(ie) $\mathrm{E}(\pi)=\left\{\mathrm{e}_{\mathrm{i}}=(\mathrm{i}, \pi(\mathrm{i})) ; 1 \leq i \leq n\right\}$
Define $A_{\pi}=\left\{\mathrm{a}_{\mathrm{ij}}=\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right) ; \mathrm{i}<\mathrm{j}\right\}$
$\mathrm{B}_{\pi}=\left\{\mathrm{b}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}} ; \pi(\mathrm{j})<\pi(\mathrm{i})\right\}$.

3.2 SYMMETRIC KNOT GRAPH

3.2.1 Definition: Let $\mathrm{a}_{\mathrm{ij}} \in \mathrm{A}_{\pi}$ if $\mathrm{a}_{\mathrm{ij}} \notin \mathrm{B}_{\pi}$, we draw the edges as in S_{n}. If $\mathrm{a}_{\mathrm{ij}}=\mathrm{b}_{\mathrm{ij}} \in \mathrm{B}_{\pi}$, then we introduce upper edge and lower edge as follows.
$b_{i j}=\left(e_{i}, e_{j}\right)$ where $e_{i}=(i, \pi(i))$ and $e_{j}=(j, \pi(j))$
Case (i): we draw the edges e_{i} and e_{i} as follows:

In this case we say e_{i} is upper than e_{j} as well as e_{j} is lower than e_{i}

[^0]
M. Kamaraj ${ }^{1}$ \& R. Mangyarkarasi $i^{*} /$ Symmetric Knot Graph/RJPA- 3(4), April-2013.

Case (ii): We draw the edges $\mathbf{e}_{\mathbf{i}}$ and e_{j} as follows:

In this case e_{i} is lower than e_{j} as well as e_{j} is upper than e_{i}
The resulting graph is known as the Symmetric Knot graph of order n derived from π.
Let K_{π} denote the collection of all Symmetric Knot graphs of order n derived from π.
Let $K_{n}=\bigcup_{\pi \in S_{n}} K_{\pi}$
Let x be an indeterminate. Now $\mathrm{K}_{\mathrm{n}}(\mathrm{x})$ is defined by
$\mathrm{K}_{\mathrm{n}}(\mathrm{x})=\left\{\left(\mathrm{x}^{\mathrm{m}}, \tilde{a}\right) ; \tilde{a} \in \mathrm{~K}_{\mathrm{n}}, \mathrm{m} \in \mathrm{Z}\right\}$
For any element in K_{n}, can be considered as an element in $\mathrm{K}_{\mathrm{n}}(\mathrm{x})$ as $(1, \tilde{a})$.

3.2 .2 Multiplication inKn

Dr. M. Kamaraj and R. Selvarani introduced 2-Knot multiplication among Knot graphs in K_{n}. Now we define a product among elements in K_{n}.
3.2.3 Definition: Let \tilde{a}, \tilde{b} be the elements in $\mathrm{K}_{\mathrm{n}}(\mathrm{x})$. Let $a=\left(x^{m_{1}}, \tilde{a}\right), b=\left(x^{m_{2}}, \tilde{b}\right)$ where m_{3} is $0,+2$, -2 . The product of two diagram \tilde{a} and \tilde{b} of n vertices is determined by putting the diagram \tilde{a} in the top and \tilde{b} is drawn below \tilde{a}. The vertices of \tilde{a} and \tilde{b} will be as shown below:

Let $\mathrm{c}=\mathrm{ab}$
where $\tilde{c}=\left(x^{m_{1}+m_{2}+m_{3}}, \tilde{a} \tilde{b}\right)$ and m_{3} is $0,+2,-2$.
Let $\tilde{a} \epsilon \mathrm{~K}_{\pi}$ and $\tilde{b} \epsilon \mathrm{~K}_{\sigma}$. Now \tilde{c} is defined as a Symmetric Knot graph of order n derived from $\sigma 0 \pi$. For each element $\gamma_{\mathrm{i}}=(\mathrm{i}, \sigma 0 \pi(\mathrm{i})) \in \mathrm{E}(\sigma 0 \pi)$ there are edges $\alpha_{\mathrm{i}}=(\mathrm{i}, \pi(\mathrm{i})) \in \mathrm{E}(\pi), \beta_{\mathrm{i}}=(\pi(\mathrm{i}), \sigma o \pi(\mathrm{i})) \epsilon \mathrm{E}(\sigma)$

Case 1: Let $\left(\alpha_{i}, \alpha_{j}\right) \in B_{\pi}$ and $\left(\beta_{i}, \beta_{j}\right) \notin B_{\pi}$ and α_{i} is upper than α_{j}
The diagram will be as follows:
M. Kamaraj ${ }^{1}$ \& R. Mangyarkarasi $i^{2^{*}}$ / Symmetric Knot Graph/RJPA- 3(4), April-2013.

We define \tilde{C} as shown below:

And also we define $\mathrm{m}_{3}=0$
Case 2: .Let $\left(\alpha_{i}, \alpha_{j}\right) \in B_{\pi}$ and $\left(\beta_{i}, \beta_{j}\right) \notin B_{\pi}$ and α_{i} is lower than α_{j}

We define \widetilde{C} as shown below:
And $\left(\gamma_{\mathrm{i}}, \gamma_{\mathrm{j}}\right) \in \mathrm{B}_{\text {бот }}$ where $\gamma_{\mathrm{i}}=(\mathrm{i}, \sigma о \pi(\mathrm{i}))$ and $\gamma_{\mathrm{j}}=(\mathrm{j}, \sigma о \pi(\mathrm{j}))$

And also we define m3=0

Case 3: .Let $\left(\alpha_{\mathrm{i}}, \alpha_{\mathrm{j}}\right) \in \mathrm{B}_{\pi}$ and $\left(\beta_{\mathrm{i}}, \beta_{\mathrm{j}}\right) \in \mathrm{B}_{\pi}$ and α_{i} is lower than α_{j}

We define \tilde{c} as shown below:
And $\left(\gamma_{\mathrm{i}}, \gamma_{\mathrm{j}}\right) \notin \mathrm{B}_{\text {бот }} \quad$ where $\gamma_{\mathrm{i}}=(\mathrm{i}, \sigma о \pi(\mathrm{i}))$ and $\quad \gamma_{\mathrm{j}}=(\mathrm{j}, \sigma о \pi(\mathrm{j}))$

And also we define $m_{3}=-2$
Case 4: .Let $\left(\alpha_{i}, \alpha_{j}\right) \in B_{\pi}$ and $\left(\beta_{i}, \beta_{\mathrm{i}}\right) \in \mathrm{B}_{\pi}$ and α_{i} is upper than α_{i}

We define \widetilde{C} as shown below:
And $\left(\gamma_{\mathrm{i}}, \gamma_{\mathrm{j}}\right) \notin \mathrm{B}_{\sigma о \pi}$ where $\gamma_{\mathrm{i}}=(\mathrm{i}, \sigma о \pi(\mathrm{i}))$ and $\gamma_{\mathrm{j}}=(\mathrm{j}, \sigma \circ \pi(\mathrm{j}))$

And also we define $\mathrm{m}_{3}=2$

Case 5: Let $\left(\alpha_{i}, \alpha_{j}\right) \in B_{\pi}$ and $\left(\beta_{i}, \beta_{j}\right) \in B_{\sigma}$ and α_{i} is lower than α

We define \tilde{C} as shown below:
And $\left(\gamma_{\mathrm{i}}, \gamma_{\mathrm{j}}\right) \notin \mathrm{B}_{\text {бол }}$ where $\gamma_{\mathrm{i}}=(\mathrm{i}, \sigma о \pi(\mathrm{i}))$ and $\gamma_{\mathrm{j}}=(\mathrm{j}, \sigma о \pi(\mathrm{j}))$

And also we define $\mathrm{m}_{3}=0$
Case 6: Let $\left(\alpha_{i}, \alpha_{j}\right) \in B_{\pi}$ and $\left(\beta_{i}, \beta_{j}\right) \in B_{\sigma}$ and α_{i} is upper than α

We define \tilde{C} as shown below:
And $\left.\left(\gamma_{\mathrm{i}}, \gamma_{\mathrm{j}}\right)\right) \notin \mathrm{B}_{\text {бот }}$ where $\gamma_{\mathrm{i}}=(\mathrm{i}, \sigma о \pi(\mathrm{i}))$ and $\quad \gamma_{\mathrm{j}}=(\mathrm{j}, \sigma о \pi(\mathrm{j}))$

And also we define $\mathrm{m}_{3}=0$

Case 7: Let $\left(\alpha_{i}, \alpha_{j}\right) \notin B_{\pi}$ and $\left(\beta_{i}, \beta_{j}\right) \in B_{\pi}$

We define \widetilde{C} as shown below:
and $\left(\gamma_{\mathrm{i}}, \gamma_{\mathrm{j}}\right) \in \mathrm{B}_{\text {бот }}$ where $\gamma_{\mathrm{i}}=(\mathrm{i}, \sigma о \pi(\mathrm{i}))$ and $\gamma_{\mathrm{i}}=(\mathrm{j}, \sigma о \pi(\mathrm{j}))$

And also we define $\mathrm{m}_{3}=0$
Case 8: Let $\left(\alpha_{i}, \alpha_{j}\right) \notin B_{\pi}$ and $\left(\beta_{i}, \beta_{j}\right) \in B_{\pi}$

We define \tilde{C} as shown below:
And $\left(\gamma_{i}, \gamma_{\mathrm{j}}\right) \in \mathrm{B}_{\text {бол }}$ where $\gamma_{\mathrm{i}}=(\mathrm{i}, \sigma о \pi(\mathrm{i}))$ and $\gamma_{\mathrm{i}}=(\mathrm{j}, \sigma \circ \pi(\mathrm{j}))$

And also we define $\mathrm{m}_{3}=0$

Case 9: Let $\left(\alpha_{\mathrm{i}}, \alpha_{\mathrm{j}}\right) \notin \mathrm{B}_{\pi}$ and $\left(\beta_{\mathrm{i}}, \beta_{\mathrm{j}}\right) \notin \mathrm{B}_{\pi}$

We define \tilde{C} as shown below:
And $\left(\gamma_{\mathrm{i}}, \gamma_{\mathrm{j}}\right) \notin \mathrm{B}_{\text {бо }}$ where $\gamma_{\mathrm{i}}=(\mathrm{i}, \sigma о \pi(\mathrm{i}))$ and $\gamma_{\mathrm{j}}=(\mathrm{j}, \sigma \circ \pi(\mathrm{j}))$

And also we define $\mathrm{m}_{3}=0$
3.2.4 Note: To prove the associative property, we need the following definition

3.2.5 Definition we define

(ie) $b=x^{2} a$
3.2.6 Remark: For the edge $\eta_{i}=(i, \delta o(\sigma o \pi)(i)) \in E(\delta o(\sigma o \pi))$,

There are corresponding edges $\alpha_{\mathrm{i}}=(\mathrm{i}, \pi(\mathrm{i})) \in \mathrm{E}(\pi), \beta_{\mathrm{i}}=(\pi(\mathrm{i}), \sigma 0 \pi(\mathrm{i})) \in \mathrm{E}(\sigma)$
$\gamma_{\mathrm{i}}=(\sigma 0 \pi(\mathrm{i}), \delta \mathrm{o}(\sigma \circ \pi(\mathrm{i})) \in \mathrm{E}(\delta)$
Let $\rho_{\mathrm{i}}=(\mathrm{i}, \sigma o \pi(\mathrm{i})) \in \mathrm{E}(\sigma 0 \pi)$
$\xi_{\mathrm{i}}=(\pi(\mathrm{i}), \delta \mathrm{o}(\sigma 0 \pi)(\mathrm{i})) \epsilon \mathrm{E}(\delta \circ \sigma)$
3.2.7 Theorem If a, b, and c are the elements in $K_{n}(x)$ Then $(a b) c=a(b c)$

Proof: Let $\quad a=\left(x^{m_{1}}, \tilde{a}\right) \quad b=\left(x^{m_{2}}, \tilde{b}\right) \quad c=\left(x^{m_{3}}, \tilde{c}\right)$ and $m_{i} \in Z$,
for every $\quad i=1,2,3$
Let $\tilde{a} \in \mathrm{~K}_{\pi}, \tilde{b} \in \mathrm{~K}_{\sigma}, \tilde{c} \in \mathrm{~K}_{\delta}$ where $\pi, \sigma, \delta \in \mathrm{S}_{\mathrm{n}}$.
We know that $\delta \mathrm{o}(\sigma 0 \pi)=(\delta \circ \sigma) \mathrm{o} \pi)$
Case 1: $a(b c)=(a b) c$
To compute LHS $=(\mathrm{ab}) \mathrm{c}$
First compute $(\tilde{a} \tilde{b})$
Let $\left(\alpha_{i}, \alpha_{j}\right) \in B_{\pi},\left(\beta_{i}, \beta_{j}\right) \in B_{\sigma},\left(\gamma_{i}, \gamma_{j}\right) \notin B_{\delta}$

To compute RHS

Case 2: Let $\left(\alpha_{i}, \alpha_{j}\right) \in B_{\pi},\left(\beta_{i}, \beta_{j}\right) \notin B_{\sigma},\left(\gamma_{i}, \gamma_{j}\right) \in B_{\delta}$

To compute RHS

Case 3 : Let $\left(\alpha_{i}, \alpha_{j}\right) \in \mathrm{B}_{\pi},\left(\beta_{\mathrm{i}}, \beta_{\mathrm{j}}\right) \in \mathrm{B}_{\sigma},\left(\gamma_{\mathrm{i}}, \gamma_{\mathrm{j}}\right) \notin \mathrm{B}_{\delta}$

To compute RHS

Case 4: Let $\left(\alpha_{i}, \alpha_{j}\right) \in B_{\pi},\left(\beta_{i}, \beta_{j}\right) \notin B_{\sigma},\left(\gamma_{i}, \gamma_{j}\right) \in B_{\delta}$

To compute RHS

Case 5 : Let $\left(\alpha_{i}, \alpha_{\mathrm{j}}\right) \in \mathrm{B}_{\pi},\left(\beta_{\mathrm{i}}, \beta_{\mathrm{j}}\right) \notin \mathrm{B}_{\sigma},\left(\gamma_{\mathrm{i}}, \gamma_{\mathrm{j}}\right) \in \mathrm{B}_{\delta}$

To compute RHS

Case 6: Let $\left(\alpha_{i}, \alpha_{j}\right) \notin B_{\pi},\left(\beta_{\mathrm{i}}, \beta_{\mathrm{j}}\right) \in \mathrm{B}_{\sigma},\left(\gamma_{\mathrm{i}}, \gamma_{\mathrm{j}}\right) \in \mathrm{B}_{\delta}$

M. Kamaraj ${ }^{1}$ \& R. Mangyarkarasi $i^{2 *} /$ Symmetric Knot Graph/RJPA- 3(4), April-2013.

To compute RHS

Case 7: Let $\left(\alpha_{i}, \alpha_{j}\right) \in B_{\pi},\left(\beta_{i}, \beta_{i}\right) \in B_{\sigma},\left(\gamma_{i}, \gamma_{i}\right) \in B_{\delta}$

M. Kamaraj ${ }^{1}$ \& R. Mangyarkarasi i^{*} /Symmetric Knot Graph/RJPA- 3(4), April-2013.

To compute RHS

Case 8: Let $\left(\alpha_{i}, \alpha_{\mathrm{j}}\right) \in \mathrm{B}_{\pi},\left(\beta_{\mathrm{i}}, \beta_{\mathrm{i}}\right) \in \mathrm{B}_{\sigma},\left(\gamma_{\mathrm{i}}, \gamma_{\mathrm{i}}\right) \in \mathrm{B}_{\delta}$

To compute RHS

Case 9: Let $\left(\alpha_{\mathrm{i}}, \alpha_{\mathrm{j}}\right) \notin \mathrm{B}_{\pi},\left(\beta_{\mathrm{i}}, \beta_{\mathrm{j}}\right) \notin \mathrm{B}_{\sigma},\left(\gamma_{\mathrm{i}}, \gamma_{\mathrm{j}}\right) \notin \mathrm{B}_{\delta}$

To compute RHS

Case 10: Let $\left(\alpha_{i}, \alpha_{j}\right) \notin B_{\pi},\left(\beta_{i}, \beta_{j}\right) \notin B_{\sigma},\left(\gamma_{i}, \gamma_{j}\right) \in B_{\delta}$

To compute RHS

Hence LHS=RHS

In 27 ways we have proved the associative property. Here we have proved in 10 ways and the remaining cases can be proved in similar way.

REFERENCES

1. [PK] M. Parvathi and M. Kamaraj signed Brauer’s Algebra, Communications in Algebra, 26(3), 839-855(1998).
2. [Br] R. Brauer, algebras which are connected with the semisimple continuous graphs, Ann of Math, 38(1937), 854872.
3. [W] H. Wenzl on the structure of Brauer's centralizer algebras, Ann of math(128)(1988) 173-193.
4. [PS] M. Parvathi and C. Selvarajsigned Brauer's algebras as centralizer algebras, communication in algebra 27 (12) 5985-5998(1999).
5. [KM] M.Kamarajand R. Mangayar karasi, Knot Symmetric Algebras, Research journal of pure algebra-1(6) (2011), 141-151.
6. [RBA] The Rook Brauer Algebra Elise G. delmas "the Rook" (2012). Honors project paper 26, Macalester College, edelmas@macalester.edu.
7. [KM] M. Kamarajand R. Mangayarkarasi, Graph theoretical representation of Knot Symmetric Algebras, Research journal of pure algebra-2(11), (2012), 344-349.

Source of support: Nil, Conflict of interest: None Declared

[^0]: * Corresponding author: R. Mangyarkarasi ${ }^{2 *}$
 ${ }^{2}$ E. M. G Yadava Women's College, Madurai 625 014, Tamil nadu, India

