Research Journal of Pure Algebra -3(4), 2013, Page: 156-162 Available online through www.rjpa.info
 ISSN 2248-9037
 PROPERTY OF HADAMARD PRODUCT OF MATRICES OVER SKEW FIELD

Fan Xin, Wang Junqing*
Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, PR China

(Received on: 05-04-13; Revised \& Accepted on: 22-04-13)

Abstract

In this paper, we give Hadamard product over skew field and relevant property by extending the property of Hadamard product of two matrices on complex domain to skew field. Especially, this paper using the method of block matrices gets a few Hadamard products' preference ordering Inequalities about Positive Semi-definite matrices $M-P$ inverse.

Keywords: Hadamard product; positive semi-definite self-conjugate matrix; skew field.

1. INTRODUCTION

Hadamard product and its property over skew field have been studied in some literatures. But we have not detailed reported for property of the Hadamard product of matrices over skew field so far. In this paper, we further study the related property and inequalities of the Hadamard product over skew field by extending the Hadamard product of two matrices on general complex domain to skew field. And based on the method of block matrices, we can obtain several Hadamard product inequalities about positive semi-definite matrices. And there are the similar conclusions on the skew field.

2. PREPARATION KNOWLEDGE

In this paper, K denotes a skew field, $K^{m \times n}$ represents the set of $m \times n$ order matrix, $M_{n}(K)$ represents the set of $n \times n$ order matrix over $K, G L_{n}(K)$ means the all of the inverse matrix of n order, A^{*} means the conjugate transpose matrix of $A \cdot H(n, *)$ denotes the set of self-conjugate matrix of order $n \cdot Z(K)$ is the centre of K,let $F=Z(K)$, so $M_{n}(F)$ denotes the set of communicate matrix of order n over K. Moreover, If $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right)$, then $\operatorname{diag} A=\left(\begin{array}{cccc}a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n n}\end{array}\right)$

[^0]Definition $1^{[2]}$: Let $A=\left(a_{i j}\right) \in K^{m \times n}, B=\left(b_{i j}\right) \in K^{m \times n}$, definite the Hadamard product of A and B as follows:
$A \circ B=\left[a_{i j} b_{i j}\right]=\left(\begin{array}{cccc}a_{11} b_{11} & a_{12} b_{12} & \cdots & a_{1 n} b_{1 n} \\ a_{21} b_{21} & a_{22} b_{22} & \cdots & a_{2 n} b_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m 1} b_{m 1} & a_{m 2} b_{m 2} & \cdots & a_{m n} b_{m n}\end{array}\right)$.
Definition $2^{[1]}$: Let R is a non-commutative principal ideal domian with involutorial anti-automorphism σ, $A \in R^{m \times n}$, if there exits $X \in R^{n \times m}$ such that:

$$
\begin{gathered}
A X A=A \\
X A X=X \\
(A X)^{*}=A X, \\
(X A)^{*}=X A .
\end{gathered}
$$

Then, we say X is a Moore - Penrose inverse of A, denoted A^{+}.

Definition $3^{[1]}$: Let $A \in H(n, *), H(n, *)$ denotes the set of self-conjugate matrix of order n.If $\alpha^{*} A \alpha \geq 0$ holds for any n dimension and non-zero column vector, then we say A is a positive semi-definite self-conjugate matrix of order n.we rewrite it: $\quad A \geq 0$

Definition $4^{[1]}:$ Let $A \in M_{n}(R)$, if there is a $B \in M_{n}(R)$, such that $A B=B A=I_{n}$, then we call A is a inverse matrix of n order. The inverse of A is denoted A^{-1}.

The following lemmas are the basis of the conclusions we talking:
Lemma $1^{[3][4]}: M=\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in M_{n}(K)$ and $M \geq 0$, where $A, B, C \in M_{n}(K)$, then $C-B^{*} A^{+} B \geq 0$
Lemma $2^{[4]}$: For any $A, B \in K^{m \times n}$, we have $A \circ B=M^{T}(A \otimes B) M$, where M is the $n^{2} \times n$ selection matrix, N is the $m^{2} \times m$ selection matrix. (M and N are the matrices which elements only are 1 and 0 , and $M^{T} M=I_{n}, N^{T} N=I_{m}$), A $\otimes B$ is the Kronecker product of A and B.This lemma is the connection of the Kronecker and Hadamard product.

Lemma 3: Let $A, B \in M_{n}(K)$, and $A \geq 0, B \geq 0$,then $M_{i} \geq 0(i=1,2,3,4)$,
where $\quad M_{1}=\left[\begin{array}{ll}B B^{+} & B \\ B & B^{2}\end{array}\right]$,

$$
M_{2}=\left[\begin{array}{ll}
A^{+} & A A^{+} \\
A^{+} A & A
\end{array}\right]
$$

$M_{3}=\left[\begin{array}{ll}B^{2} & B \\ B & B B^{+}\end{array}\right]$,
$M_{4}=\left[\begin{array}{ll}A & A A^{+} \\ A A^{+} & A^{+}\end{array}\right]$.

Proof: $\left[\begin{array}{ll}I_{n} & 0 \\ -B & I_{n}\end{array}\right] M_{1}\left[\begin{array}{ll}I_{n} & -B \\ 0 & I_{n}\end{array}\right]=\left[\begin{array}{ll}B B^{+} & 0 \\ 0 & 0\end{array}\right] \geq 0$,

$$
\left[\begin{array}{ll}
I_{n} & 0 \\
-A & I_{n}
\end{array}\right] M_{2}\left[\begin{array}{ll}
I_{n} & -A \\
0 & I_{n}
\end{array}\right]=\left[\begin{array}{ll}
A^{+} & 0 \\
0 & 0
\end{array}\right] \geq 0,
$$

Similarly, $\quad M_{3} \geq 0, \quad M_{4} \geq 0$.
Lemma 4: Let $A, B \in M_{n}(K)$, moreover $A \geq 0, B \geq 0$, if $\left(\begin{array}{ll}A & B \\ B & A\end{array}\right) \geq 0$, then $A \geq B$.
Proof: $2(A-B)=(A-B, B-A)\left[\begin{array}{l}I_{n} \\ -I_{n}\end{array}\right]=\left(-I_{n}, I_{n}\right)\left[\begin{array}{ll}A & B \\ B & A\end{array}\right]\left[\begin{array}{l}I_{n} \\ -I_{n}\end{array}\right] \geq 0$,
So $A-B \geq 0$, 即 $A \geq B$.

3. PROPERTY AND THEOREM

Hadamard meet the following basic properties:
(1) $A=\left(a_{i j}\right) \in K^{m \times n}$, null matrix $\mathbf{0} \in M_{n}(K)$, 则 $A \circ 0=0 \circ A=0$.
(2) $(A \circ B)^{T}=A^{T} \circ B^{T}$.
(3) $c(A \circ B)=(c A) \circ B, c$ is a real number.
(4) The Hadamard product of $A=\left(a_{i j}\right) \in K^{m \times m}$ and I_{m} is a $m \times m$ diagonal matrix namely:

$$
A \circ I_{m}=I_{m} \circ A=\operatorname{diag}(A)=\operatorname{diag}\left(a_{11}, a_{22} \cdots a_{m m}\right)
$$

(5) $A \circ(B \circ C)=(A \circ B) \circ C=A \circ B \circ C$

$$
\begin{aligned}
& (A \pm B) \circ C=A \circ C \pm B \circ C \\
& (A+B) \circ(C+D)=A \circ C+A \circ D+B \circ C+B \circ D
\end{aligned}
$$

(6) If $A=\left(a_{i j}\right) \in K^{m \times m}, C=\left(c_{i j}\right) \in K^{m \times m}$

$$
B=\left(b_{i j}\right) \in K^{n \times n}, D=\left(d_{i j}\right) \in K^{n \times n}
$$

Then $(A \oplus B) \circ(C \oplus D)=(A \circ C) \oplus(B \circ D)$.

Proof: $A \oplus B=\left[\begin{array}{cc}A & 0_{m \times n} \\ 0_{n \times m} & B\end{array}\right], C \oplus D=\left[\begin{array}{cc}C & 0_{m \times n} \\ 0_{n \times m} & D\end{array}\right]$

$$
\begin{aligned}
& (A \oplus B) \circ(C \oplus D)=\left[\begin{array}{cc}
A \circ C & 0_{m \times n} \\
0_{n \times m} & B \circ D
\end{array}\right] \\
& (A \circ C) \oplus(B \circ D)=\left[\begin{array}{cc}
A \circ C & 0_{m \times n} \\
0_{n \times m} & B \circ D
\end{array}\right]
\end{aligned}
$$

This proposition is proved.
(7) If A, B, D are the square matrix of $M_{n}(K), D$ is a diagonal matrix, so $(D A) \circ(B D)=D(A \circ B) D$.
(8) $\operatorname{tr}(A \circ B) \neq \operatorname{tr}(A) \operatorname{tr}(B)$.
(9) Because the skew field (decision ring) is non-commutative, $A \circ B \neq B \circ A$.

For example: $A=\left(\begin{array}{ll}1 & i \\ j & k\end{array}\right), \quad B=\left(\begin{array}{ll}j & k \\ i & 1\end{array}\right)$,
Then $A \circ B=\left(\begin{array}{cc}j & i k \\ j i & k\end{array}\right)=\left(\begin{array}{cc}j & -j \\ -k & k\end{array}\right), B \circ A=\left(\begin{array}{cc}j & k i \\ i j & k\end{array}\right)=\left(\begin{array}{ll}j & j \\ k & k\end{array}\right)$,
So $A \circ B \neq B \circ A$.
(10) $A, B \in K^{m \times n}$, If A, B are positive semi-definite, then its Hadamard product $A \circ B$ is also positive semi-definite.

Theorem 1: If $A, B, C \in K^{m \times n}$, then $\operatorname{tr}\left[A^{T}(B \circ C)\right]=\operatorname{tr}\left[\left(A^{T} \circ B^{T}\right) C\right]$.
Proof: Noted the diagonal elements of $A^{T}(B \circ C)$ and $\left(A^{T} \circ B^{T}\right) C$ are common, that is : $\left[A^{T}(B \circ C)\right]_{i i}=\sum_{k=1}^{n} a_{k i} b_{k i} c_{k i}=\left[\left(A^{T} \circ B^{T}\right) C\right]_{i i}$.

Theorem 2: If $A, B \in K^{m \times n}$, then $\operatorname{rank}(A \circ B) \leq(\operatorname{rank} A)(\operatorname{rank} B)$.

Proof: Any matrix with rank r can be written as combination of r matrices with rank 1 . Every matrix with rank 1 is the outer product of two vectors. If $\operatorname{rank} A=r_{1}, \operatorname{rank} B=r_{2}$, then $A=\sum_{i=1}^{r_{1}} x_{i} y_{i}^{T}, B=\sum_{j=1}^{r_{2}} u_{j} v_{j}^{T}$, where x_{i}, u_{j} and y_{i}, v_{j} are the linear independent column vector over
$K, i=1,2, \cdots r_{1}, j=1,2, \cdots r_{2}$. Therefore, $A \circ B=\sum_{i=1}^{r_{1}} \sum_{j=1}^{r_{2}}\left(x_{i} \circ u_{j}\right)\left(y_{i} \circ v_{j}\right)^{T}$. Then

$$
\begin{aligned}
\operatorname{rank}(A \circ B) & =\operatorname{rank}\left[\sum_{i=1}^{r_{1}} \sum_{j=1}^{r_{2}}\left(x_{i} \circ u_{j}\right)\left(y_{i} \circ v_{j}\right)^{T}\right] \leq \sum_{i=1}^{r_{1}} \sum_{j=1}^{r_{2}} \operatorname{rank}\left[\left(x_{i} \circ u_{j}\right)\left(y_{i} \circ v_{j}\right)^{T}\right] \\
& \leq \sum_{i=1}^{r_{1}} \sum_{j=1}^{r_{2}} 1=r_{1} r_{2}=(\operatorname{rank} A)(\operatorname{rank} B) .
\end{aligned}
$$

This suggests that $A \circ B$ could be written as combination of at most $r_{1} r_{2}$ matrices with 1 rank.
So, $\operatorname{rank}(A \circ B) \leq(\operatorname{rank} A)(\operatorname{rank} B)$.

Another method: Because $A \circ B=M^{T}(A \otimes B) N$, according to the property of matrix of rank:
$\operatorname{rank}(A \circ B)=\operatorname{rank}\left[M^{T}(A \otimes B) N\right] \leq \operatorname{rank}(A \otimes B)$.
Next we should show $\operatorname{rank}(A \otimes B)=(\operatorname{rank} A)(\operatorname{rank} B)$
Let $r(A)=s$, then there exists $P \in G L_{m}(K), Q \in G L_{n}(K)$ such that $P A Q=\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right)$. For $B \in K^{m \times n}$, let $r(B)=t$ there exists $S \in G L_{m}(K), T \in G L_{n}(K)$ such that
$S B T=\left(\begin{array}{cc}I_{t} & 0 \\ 0 & 0\end{array}\right)$.because $(P \otimes S)(A \otimes B)(P \otimes S)(A \otimes B)=(P A Q) \otimes(S B T)=\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) \otimes\left(\begin{array}{cc}I_{t} & 0 \\ 0 & 0\end{array}\right)=$
$\left(\begin{array}{cc}I_{s t} & 0 \\ 0 & 0\end{array}\right)$. Because $P \otimes S, Q \otimes T$ are invertible matrix, $r(A \otimes B)=r\left(\begin{array}{cc}I_{s t} & 0 \\ 0 & 0\end{array}\right)=s t=r(A) r(B)$.
So, $\operatorname{rank}(A \circ B) \leq(\operatorname{rank} A)(\operatorname{rank} B)$.
Theorem 3: Let $A, B \in H(n, *)$ and $A \geq 0, B \geq 0$, then $A^{+} \circ B^{+} \geq\left[\left(A^{+} A\right) \circ\left(B^{+} B\right)\right](A \circ B)^{+}\left[\left(A A^{+}\right) \circ\left(B B^{+}\right)\right]$.
Proof: By lemma3 and theorem 1:
$\left(\begin{array}{cc}A \circ B & \left(A A^{+}\right) \circ\left(B B^{+}\right) \\ \left(A^{+} A\right) \circ\left(B^{+} B\right) & A^{+} \circ B^{+}\end{array}\right)=\left(\begin{array}{cc}A & A A^{+} \\ A^{+} A & A^{+}\end{array}\right) \circ\left(\begin{array}{cc}B & B B^{+} \\ B^{+} B & B^{+}\end{array}\right) \geq 0$.
According to the definition of Moore - Penrose inverse:
$\left[\left(A A^{+}\right) \circ\left(B B^{+}\right)\right]^{*}=\left(A A^{+}\right)^{*} \circ\left(B B^{+}\right)^{*}=\left(A^{+} A\right) \circ\left(B^{+} B\right)$
Remark: $A \circ B=C,\left(A A^{+}\right) \circ\left(B B^{+}\right)=D, A^{+} \circ B^{+}=G$
Then $\left(\begin{array}{cc}A \circ B & \left(A A^{+}\right) \circ\left(B B^{+}\right) \\ \left(A^{+} A\right) \circ\left(B^{+} B\right) & A^{+} \circ B^{+}\end{array}\right)=\left(\begin{array}{cc}C & D \\ D^{*} & G\end{array}\right) \geq 0$
According to lemma $2, G-D^{*} C^{+} D \geq 0$,
so , $A^{+} \circ B^{+}-\left[\left(A^{+} A\right) \circ\left(B^{+} B\right)\right]\left(A \circ B^{+}\right)\left[\left(A A^{+}\right) \circ\left(B B^{+}\right)\right] \geq 0$.

Corollary 1: Assume that $A, B \in H(n, *)$ and $A \geq 0, B>0$, then
$A^{+} \circ B^{-} \geq\left(\operatorname{diag} A^{+} A\right)(A \circ B)^{+}\left(\operatorname{diag} A A^{+}\right)$

Proof: According to theorem 1, let $B^{+}=B^{-}$, then $B^{-} B=B B^{-}=I$, on the basis of property (4), We can come to this conclusion easily.

Corollary 2: Assume that $A, B \in H(n, *)$ and $A>0, B>0$, then $A^{-} \circ B^{-} \geq(A \circ B)^{-}$.
Proof: Let $A^{+}=A^{-}, B^{+}=B^{-}$, the result can be obtained.
Theorem 4: Assume that $A, B \in H(n, *)$ and $A \geq 0, B \geq 0$ then $A^{2} \circ B^{2} \geq(A \circ B)\left[\left(A A^{+}\right) \circ\left(B B^{+}\right)\right]^{+}(A \circ B)$
Proof: Combing the lemma 3 and theorem 1
$\left(\begin{array}{cc}\left(A A^{+}\right) \circ\left(B B^{+}\right) & A \circ B \\ A \circ B & A^{2} \circ B^{2}\end{array}\right)=\left(\begin{array}{cc}A A^{+} & A \\ A & A^{2}\end{array}\right) \circ\left(\begin{array}{cc}B B^{+} & B \\ B & B^{2}\end{array}\right) \geq 0$
By lemma 2, $A^{2} \circ B^{2}-(A \circ B)\left[\left(A A^{+}\right) \circ\left(B B^{+}\right)\right]^{+}(A \circ B) \geq 0$.

Corollary 3: Assume that $A, B \in H(n, *)$ and, then $A^{2} \circ B^{2} \geq(A \circ B)^{2}$.

Theorem 5: A is a self-conjugate matrix on $M_{n}(F)$, and $A \geq 0$, then
$\left(A A^{+}\right) \circ A^{2} \geq A \circ A$.
Proof: According to lemma 3 and theorem 1:
$\left(\begin{array}{cc}A^{2} \circ\left(A A^{+}\right) & A \circ A \\ A \circ A & A^{2} \circ\left(A A^{+}\right)\end{array}\right)=\left(\begin{array}{cc}\left(A A^{+}\right) \circ A^{2} & A \circ A \\ A \circ A & A^{2} \circ\left(A A^{+}\right)\end{array}\right)=\left(\begin{array}{cc}A A^{+} & A \\ A & A^{2}\end{array}\right) \circ\left(\begin{array}{cc}A^{2} & A \\ A & A A^{+}\end{array}\right) \geq 0$
By lemma 4, $\quad\left(A A^{+}\right) \circ A^{2} \geq A \circ A$.
Corollary 4: A is a self-conjugate matrix on $M_{n}(F)$, then $\operatorname{diag} A^{2} \geq A \circ A$
Corollary 5: By corollary 4, if all the diagonal elements of A^{2} are 1 , then $A \circ A \leq I_{n}$
Theorem 6: A is a self-conjugate matrix on $M_{n}(F)$, and $A \geq 0$, then $A \circ A^{+} \geq\left(A^{+} A\right) \circ\left(A A^{+}\right)$
Proof: Combing the lemma 3 and theorem 1:

$$
\left(\begin{array}{cc}
A \circ A^{+} & \left(A A^{+}\right) \circ\left(A^{+} A\right) \\
\left(A^{+} A\right) \circ\left(A A^{+}\right) & A \circ A^{+}
\end{array}\right)=\left(\begin{array}{cc}
A \circ A^{+} & \left(A A^{+}\right) \circ\left(A A^{+}\right) \\
\left(A^{+} A\right) \circ\left(A^{+} A\right) & A^{+} \circ A
\end{array}\right)=\left(\begin{array}{cc}
A & A A^{+} \\
A^{+} A & A^{+}
\end{array}\right) \circ\left(\begin{array}{cc}
A^{+} & A A^{+} \\
A^{+} A & A
\end{array}\right) \geq 0
$$

by lemma $4, \quad\left(A A^{+}\right) \circ A^{2} \geq A \circ A$

Theorem 7: Assume that $A, B, M \in K^{m \times n}, A \geq 0, B \geq 0, M \geq 0$,for any real number a, b, we have:
$\left(a^{2}+b^{2}\right)\left(A^{*} A \circ B^{*} B\right)+2 a b\left(A^{*} B \circ B^{*} A\right) \geq(a+b)^{2}\left(A^{*} M \circ B^{*} M\right)\left(M^{*} M \circ M M^{*}\right)^{+}\left(M^{*} A \circ M^{*} B\right)$

Proof: Remark: $L=\left(\begin{array}{ll}L_{1} & L_{2}\end{array}\right)$, where $L_{1}=M \otimes M, L_{2}=a A \otimes B+b B \otimes A$.
$S=L^{*} L=\binom{L_{1}^{*}}{L_{2}^{*}}\left(\begin{array}{ll}L_{1} & L_{2}\end{array}\right)=\left(\begin{array}{ll}L_{1}^{*} L_{1} & L_{1}^{*} L_{2} \\ L_{2}^{*} L_{1} & L_{2}^{*} L_{2}\end{array}\right) \geq 0$
Though calculation:
$L_{1}^{*} L_{1}=\left(M^{*} M \otimes M^{*} M\right)$
$L_{1}^{*} L_{2}=a M^{*} A \otimes M^{*} B+b M^{*} B \otimes M^{*} A$
$L_{2}^{*} L_{1}=a A^{*} M \otimes B^{*} M+b B^{*} M \otimes A^{*} M$
$L_{2}^{*} L_{2}=a^{2}\left(A^{*} A \otimes B^{*} B\right)+b^{2}\left(B^{*} B \otimes A^{*} A\right)+a b\left[\left(A^{*} B \otimes B^{*} A\right)+\left(B^{*} A \otimes A^{*} B\right)\right]$
Combing the lemma 3 and theorem 1, the result can be held up.
Corollary 6: If $A, B \in K^{m \times n}$, and $k \in[-1,1]$, then $A A^{*} \circ B B^{*}+k A B^{*} \circ B A^{*} \geq(1+k)(A \circ B)(A \circ B)^{*}$

Proof: By theorem8, let $a^{2}+b^{2}=1,2 a b=k, M=I$, we can see the results easily.

Corollary 7: If $A, B \in K^{m \times n}$, then $A^{*} A \circ B^{*} B \geq\left(A^{*} \circ B^{*}\right)(A \circ B)$

Proof: By theorem8, let $a=1, b=0, M=I$, the results can be held.

REFERENCE

1. Wajin Zhuang, Introduction to Matrix Theory over Skew Field [M], Beijing: Science press, 2006
2. Chen jingliang, Liu xianghui, Special Matrices [M], Qinghua University press, 2000
3. Liu yu, Cao chongguang, Inequalities for the Hadamard Product of Positive Semi-definite Matrices [J], Mathematics in Practice and Theory. 36, (2006)271-273.
4. Zeng cheng, Tang fengxiang, He jintong, On the Matrix Inequality for Hadamard Product of Positive Semi-definite Matrices[J], Journal of Guiyang College.4, (2009)1-3.
5. Liu Shuangzhe, Inequalities Involving Hadamard Products of Positive Semi-definite Matrices [J], Journal of Mathematical Analysis and Applications.243, (2000)458-463.
6. R. A. Horn and C. R. Johnson, Matrix analysis [M], Cambridge University Press, 1991.

Source of support: Nil, Conflict of interest: None Declared

[^0]: * Corresponding author: Fan Xin, Wang Junqing*

 Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, PR China

