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ABSTRACT 

In this paper, we give Hadamard  product over skew field and relevant property by extending the property of 

Hadamard  product of two matrices on complex domain to skew field. Especially, this paper using the method of 
block matrices gets a few Hadamard  products’ preference ordering Inequalities about Positive Semi-definite 
matrices PM −  inverse. 
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1. INTRODUCTION 
Hadamard  product and its property over skew field have been studied in some literatures. But we have not detailed 
reported for property of the Hadamard  product of matrices over skew field so far. In this paper, we further study 
the related property and inequalities of the Hadamard  product over skew field by extending the Hadamard  
product of two matrices on general complex domain to skew field. And based on the method of block matrices, we can 
obtain several Hadamard  product inequalities about positive semi-definite matrices. And there are the similar 
conclusions on the skew field. 
 
2. PREPARATION KNOWLEDGE 

In this paper, K denotes a skew field, nmK ×  represents the set of nm×  order matrix, ( )KM n  represents the set 

of nn×  order matrix over K , ( )KGLn  means the all of the inverse matrix of n  order , ∗A means the conjugate 

transpose matrix of A . ( )∗,nH  denotes the set of self-conjugate matrix of order n . ( )KZ  is the centre of K ,let 

( )KZF = , so ( )FM n  denotes the set of communicate matrix of order n  over .K  Moreover, If 
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Definition ]2[1 : Let ( ) nm
ij KaA ×∈= , ( )∈= ijbB nmK ×

，definite the Hadamard  product of A  and B  as 

follows: 

BA  ][ ijijba=
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Definition ]1[2 : Let R  is a non-commutative principal ideal domian with involutorial anti-automorphism σ , 

nmRA ×∈ ，if there exits mnRX ×∈ such that: 

,AXA A=  

XXAX = , 

( ) ,AX AX∗ =  

( ) .XA XA∗ =  

Then, we say X is a PenroseMoore −  inverse of ,A denoted +A . 

 

Definition ]1[3 : Let ( )∗∈ ,nHA ， ( )∗,nH  denotes the set of self-conjugate matrix of order n .If 0≥∗ αα A  

holds for any n  dimension and non-zero column vector, then we say A  is a positive semi-definite self-conjugate 
matrix of order n .we rewrite it： A 0≥   
 

Definition ]1[4 : Let ( )RMA n∈ , if there is a ( )RMB n∈ , such that nIBAAB == ,then we call A is a inverse 

matrix of n  order. The inverse of A is denoted 1−A . 

 
The following lemmas are the basis of the conclusions we talking: 

Lemma ]4][3[1 : ( )KM
CB
BA

M n∈







= ∗  and 0≥M , where ( )KMCBA n∈,, , then 0≥− +∗ BABC  

Lemma ]4[2 :  For any nmKBA ×∈, ，we have BA  = MBAM T )( ⊗ ，where M is the nn ×2  selection 

matrix， N  is the mm ×2  selection matrix. ( M and N are the matrices which elements only are 1 and 0 ,and 

n
T IMM = , m

T INN = ), BA⊗  is the kerKronec  product of A  and B .This lemma is the connection of  

the kerKronec  and Hadamard  product. 
 

Lemma 3: Let )(, KMBA n∈ ，and 0≥A , 0≥B ,then )4,3,2,1(0 =≥ iMi , 
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where  
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Proof: 
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Similarly, 03 ≥M ， 04 ≥M . 

Lemma 4: Let )(, KMBA n∈ ，moreover 0≥A , 0≥B , if 



B
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B

0≥ ,then BA ≥ . 

Proof: ),()(2 ABBABA −−=− 
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So 0≥− BA ，即 BA ≥ . 
 
3. PROPERTY AND THEOREM 
Hadamard  meet the following basic properties: 

(1) ( ) ,m n
ijA a K ×= ∈ null matrix 0 )(KM n∈ ,则 000 == AA  . 

(2) ( ) TTT BABA  = . 

(3) ( ) ( ) BcABAc  = , c  is a real number. 

(4) The Hadamard  product of ( ) mm
ij KaA ×∈=  and mI is a mm×  diagonal matrix namely： 

   ( ) ( )mmmm aaadiagAdiagAIIA  2211,=== . 

(5) ( ) ( ) CBACBACBA  ==  

   ( ) CBCACBA  ±=±  

   ( ) ( ) DBCBDACADCBA  +++=++ . 

(6) If ( ) ( ) mm
ij

mm
ij KcCKaA ×× ∈=∈= ,  

   ( ) ( ) nn
ij

nn
ij KdDKbB ×× ∈=∈= ,  

Then ( ) ( ) ( ) ( )DBCADCBA  ⊕=⊕⊕ . 
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Proof: 
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This proposition is proved. 

(7) If DBA ,, are the square matrix of )(KM n , D is a diagonal matrix, so ( ) ( ) ( )DBADBDDA  = . 

(8) ( ) ( ) ( )BtrAtrBAtr ≠ . 

(9) Because the skew field (decision ring) is non-commutative, ABBA  ≠ . 

For example: 
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So BA  ≠ AB  . 
 

(10) nmKBA ×∈, , If BA, are positive semi-definite， then its Hadamard  product BA   is also positive 

semi-definite. 

Theorem 1: If nmKCBA ×∈,, ，then ( )[ ] ( )[ ]CBAtrCBAtr TTT
 = . 

Proof: Noted the diagonal elements of ( )CBAT
 and ( )CBA TT

 are common ， that is ：

( )[ ] ( )[ ]iiTT
kiki

n

k
kiii

T CBAcbaCBA  ==∑
=1

. 

Theorem 2: If nmKBA ×∈, , then ( ) ( )( )rankBrankABArank ≤ . 

 
Proof: Any matrix with rank r can be written as combination of r matrices with rank 1 . Every matrix with rank 1 is the 

outer product of two vectors. If 21, rrankBrrankA == ，then T
i

r

i
i yxA ∑

=

=
1

1
, T

j

r

j
jvuB ∑

=

=
2

1

，where ji ux ,  and 

ji vy , are the linear independent column vector over 

K , .,2,1,,2,1 21 rjri  == Therefore, ( )( )
1 2

1 1
.

r r T

i j i j
i j

A B x u y v
= =

=∑∑    Then  
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( )( )rankBrankArr == 21 . 

This suggests that BA   could be written as combination of at most 21rr  matrices with 1 rank.  

So, ( ) ( )( )rank A B rankA rankB≤ . 

Another method: Because BA  = NBAM T )( ⊗ , according to the property of matrix of rank：

( )BArank  = ])([ NBAMrank T ⊗ ( )BArank ⊗≤ . 

Next we should show ( ) ( )( )rank A B rankA rankB⊗ =

Let ( ) sAr = , then there exists ( )KGLP m∈ , ( )KGLQ n∈  such that 
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0sI

PAQ . For nmKB ×∈ , let 

( ) tBr =  there exists ( )KGLS m∈ , ( )KGLT n∈  such that 
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. Because  SP⊗  , TQ⊗  are invertible matrix, ( )BAr ⊗ 







=

00
0stI

r == st ( )Ar ( )Br . 

So, ( ) ( )( )rank A B rankA rankB≤ .

Theorem 3: Let ( )∗∈ ,, nHBA and 0≥A , 0≥B ,then )]()[())](()[( +++++++ ≥ BBAABABBAABA  . 

Proof: By lemma3 and theorem 1： 
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According to the definition of PenroseMoore −  inverse: 

∗++ )]()[( BBAA  )()()()( BBAABBAA ++∗+∗+ ==   

Remark: ,A B C= ,)()( DBBAA =++
 GBA =++

  

Then 
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According to lemma 2, 0≥− +∗ DCDG , 

so , 0)]())[()](()[( ≥− +++++++ BBAABABBAABA  . 
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Corollary 1: Assume that ( )∗∈ ,, nHBA and 0≥A , 0,B >  then 

( ) )()( +++−+ ≥ diagAABAAdiagABA   

Proof: According to theorem 1，let ,B B+ −=  then IBBBB == −− , on the basis of property (4), We can come to 

this conclusion easily. 

Corollary 2: Assume that ( )∗∈ ,, nHBA  and 0>A , 0>B , then −−− ≥ )( BABA  . 

Proof: Let −+ = AA , −+ = BB , the result can be obtained. 

Theorem 4: Assume that ( )∗∈ ,, nHBA  and 0≥A , 0≥B then ( )BABBAABABA 

+++≥ )]())[((22  

Proof: Combing the lemma 3 and theorem 1 
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By lemma 2, ( ) 0)]())[((22 ≥− +++ BABBAABABA  . 

Corollary 3: Assume that ( )∗∈ ,, nHBA  and, then 222 )( BABA  ≥ . 

Theorem 5: A is a self-conjugate matrix on ( )FM n , and 0≥A ，then 

AAAAA  ≥+ 2)( . 

Proof: According to lemma 3 and theorem 1: 
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By lemma 4， AAAAA  ≥+ 2)( . 

Corollary 4: A is a self-conjugate matrix on ( )FM n , then AAdiagA ≥2  

Corollary 5: By corollary 4，if all the diagonal elements of 2A are 1，then nIAA ≤  

Theorem 6: A is a self-conjugate matrix on ( )FM n , and 0≥A , then ( ) ( )+++ ≥ AAAAAA   

Proof: Combing the lemma 3 and theorem 1: 
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by lemma 4， AAAAA  ≥+ 2)(  

Theorem 7: Assume that nmKMBA ×∈,, , 0≥A , 0≥B , 0≥M ,for any real number ba, ,we have: 

)(2))(( *22 ABBAabBBAAba 

∗∗∗ ++ )())(()( 2 BMAMMMMMMBMAba ∗∗+∗∗∗∗+≥   
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Proof:  Remark: ( )21 LLL = , where MML ⊗=1 , AbBBaAL ⊗+⊗=2 . 

( )21
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1 LL
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2212
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=
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Though calculation: 

∗
1L 1L )( MMMM ∗∗ ⊗=  

∗
1L 2L = a ∗M A ⊗ AMBbMBM ∗∗∗ ⊗+  

MAMbBMBMaALL ∗∗∗∗∗ ⊗+⊗=12  

)]()[()()( 22
22 BAABABBAabAABBbBBAAaLL ∗∗∗∗∗∗∗∗∗ ⊗+⊗+⊗+⊗=  

Combing the lemma 3 and theorem 1, the result can be held up. 

Corollary 6: If nmKBA ×∈, , and [ ]1,1−∈k ,then ∗∗∗∗∗ +≥+ ))()(1( BABAkBAkABBBAA   

Proof: By theorem8, let ,122 =+ ba ,2 kab = IM = , we can see the results easily. 

Corollary 7: If nmKBA ×∈, , then ))(( BABABBAA 

∗∗∗∗ ≥  

Proof: By theorem8, let IMba === ,0,1 , the results can be held.  
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