Research Journal of Pure Algebra -3(4), 2013, Page: 153-155
 Available online through www.rjpa.info ISSN 2248-9037

SIMPLE RIGHT ALTERNATIVE RINGS WITH (x y) z = (x z) y

D. Bharathi ${ }^{1}$, D. Eswara rao ${ }^{2 *}$, D. Sarada ${ }^{2}$ and M. Muni rathnam ${ }^{2}$
${ }^{1}$ Asso. Professor, Dept of Mathematics, S. V. University, Tirupati, India
${ }^{2}$ Dept of mathematics, S. V. University, Tirupati, India

(Received on: 04-04-13; Revised \& Accepted on: 18-04-13)

Abstract

In this paper, first we prove that in a simple right alternative ring R with $(x y) z=(x z) y$, the square of every element of R is in the nucleus. Using this we prove that R is alternative.

Key words: Simple, 2-divisible ring, Nucleus, Right Alternative Ring, Alternative Ring.

Simple Ring: A ring R is said to be simple if whenever A is an ideal of R, then either $A=0$ or $A=R$
2-divisible Ring: We define a ring R to be 2-divisible if $2 \mathrm{x}=0$ implies $\mathrm{x}=0$, for all x in R .

Nucleus:

The nucleus N of a ring R, we mean the set of all elements n in R such that $(n, R, R)=(R, n, R)=(R, R, n)=0$.
Right Alternative Ring: A right alternative ring R is a ring in which $y(x x)=(y x) x$, for all x, y, in R.
Alternative Ring: A right alternative ring R is a ring in which $(x x) y=x(x y), y(x x)=(y x) x$, for all x, y in R.

INTRODUCTION

Kleinfeld and Smith[1,2] studied simple alternative rings with the assumption that either commutators are in the nucleus or all squares x^{2} are in the nucleus in order to see that whether these rings are alternative or associative. In this paper, first we prove that in a simple right alternative ring R with ($x y$) $z=(x z) y$, the square of every element of R is in the nucleus. Using this we prove that R is alternative.

Let R be a 2-divisible non associative right alternative ring with ($\mathrm{x} y$) $\mathrm{z}=(\mathrm{x} z) \mathrm{y}$
R is said to be simple if whenever A is an ideal of R then either $A=R$ or $A=0$.
In a right alternative ring the following identities hold:
$(\mathrm{x}, \mathrm{y}, \mathrm{z})=-(\mathrm{x}, \mathrm{z}, \mathrm{y})$
(x y.z) y = x (y z.y)
and $(\mathrm{w} x, \mathrm{y}, \mathrm{z})+(\mathrm{w}, \mathrm{x},(\mathrm{y}, \mathrm{z}))=\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z})+(\mathrm{w}, \mathrm{y}, \mathrm{z}) \mathrm{x}$.
Lemma 1: The set defined by $T=\{t \in R / R t=0\}$ is an ideal of R.
Proof: Obviously, T is a left ideal, since RT = 0, Let $t \in T . x, y \in R$.
Then $\mathrm{x}(\mathrm{t} \mathrm{y})=\mathrm{x}(\mathrm{t} \mathrm{y}+\mathrm{yt})=(\mathrm{x} \mathrm{t}) \mathrm{y}+(\mathrm{xy}) \mathrm{t}$, using (2).
But $(x t) y+(x y) t=0$. Thus $x(t y)=0$ and hence $T R \subset T$.
Thus T is an ideal of R .

[^0]D. Bharathi', D. Eswara rao ${ }^{2 *}$, D. Sarada ${ }^{2}$ and M. Muni rathnam ${ }^{2} /$ Simple Right Alternative rings with $(x y) z=(x z) y / R J P A-3(4)$, April-2013.

Lemma: 2 If R is a simple right alternative ring with $(x y) z=(x z) y$, then the square of every element of R is in the nucleus N .

Proof: Let $\mathrm{N}_{\mathrm{r}}=\{\mathrm{n} \in \mathrm{R} /(\mathrm{R}, \mathrm{R}, \mathrm{n})=0\}$
By using (2), (1), (3) and (1) in that order, we have
$\left(w x^{2}\right) y=(w x \cdot x) y=(w x . y) x=w(x y \cdot x)=w\left(x^{2} y\right)$
Thus ($\mathrm{w}, \mathrm{x}^{2}, \mathrm{y}$) $=0$
From (2) $\left(w, y, x^{2}\right)=0$.this shows that for all $x \in R$ we have $x^{2} \in N_{r}$
Now for all $x, y \in R, x y+y x=(x+y)^{2}-x^{2}-y^{2} \in N_{r}$
From (1) we obtain ($\mathrm{wx} \cdot \mathrm{y}$) $\mathrm{z}=(\mathrm{wy.x}) \mathrm{z}=(\mathrm{w} y \cdot \mathrm{z}) \mathrm{x}$ and $(\mathrm{wx})(\mathrm{yz})=(\mathrm{w} \cdot \mathrm{yz}) \mathrm{x}$.
Thus by subtraction, $(\mathrm{w} x, \mathrm{y}, \mathrm{z})=(\mathrm{w}, \mathrm{y}, \mathrm{z}) \mathrm{x}$.
By combining (4), (7) we have ($\mathrm{w}, \mathrm{x},(\mathrm{y}, \mathrm{z})$) $=\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Let $\mathrm{x}=\mathrm{n} \in \mathrm{N}_{\mathrm{r}}$ in (8) thus $\mathrm{R}\left(\mathrm{N}_{\mathrm{r}}, \mathrm{R}, \mathrm{R}\right)=0$
Hence from lemma (1) we have $\left(N_{r}, R, R\right) \subset T$. since T is an ideal of R and
R is simple either $T=R$ or $T=0$.
Since we are assuming R to be nonassociative, $T \neq R$.
Thus $T=0$. That is $\left(N_{r}, R, R\right)=0$
Hence N_{r} is the nucleus N of R .
From (5) it follows that the square of every element of R is in the nucleus.
Lemma: 3 In a simple 2-divisible right alternative ring $(x, x, y) \in N$ and $N(R, R, R)=0$
Proof: In (8), let $\mathrm{y}=\mathrm{n} \in \mathrm{N}$. Then $(\mathrm{w}, \mathrm{x},(\mathrm{n}, \mathrm{z}))=0$, so that $(\mathrm{n}, \mathrm{z}) \in \mathrm{N}$.
From (6) $2 n z \in N$ and $2 z n \in N$. since R is 2 -divisible, $n z \in$ Nand $z n \in N$.
From (5) it follows that $x^{2} y \in N$
Then from (1) $\left(\mathrm{x}^{2} \mathrm{y}\right)=(\mathrm{x} x) \mathrm{y}=(\mathrm{x} y) \mathrm{x} \in \mathrm{N}$. we define $\mathrm{a} \equiv b$ if and onl y if $\mathrm{a}-\mathrm{b} \in N$
Now from (6) implies that $\mathrm{x} \mathrm{y} . \mathrm{y}+\mathrm{x} . \mathrm{x} \mathrm{y} \in \mathrm{N}$. Hence $-\mathrm{x} . \mathrm{x} \mathrm{y} \equiv \mathrm{x} \mathrm{y} . \mathrm{x} \in N$
That is $\mathrm{x} . \mathrm{x} \mathrm{y} \in N$
From (1) and (2) yields ($\mathrm{x}, \mathrm{x}, \mathrm{y}) \in N$. Let $\mathrm{w}=\mathrm{n} \in N$ in (8).
We get $0=(n, x,(y, z))=n(x, y, z)$. Hence $N(R, R, R)=0$
Lemma: 4 The set $\mathrm{S}=\{\mathrm{s} \in N / s(R, R, R)=0\}$ is an ideal of R .
Proof: For $\mathrm{s} \in S$ and $\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z} \in R$, we have
$(s, w,(x, y, z))=(s, w) .(x, y, z)-s .(w(x, y, z))=0$
This implies that (s w). $(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ and $\mathrm{sw} \in S$.
$\operatorname{Now}(w, s,(x, y, z))=w s .(x, y, z)-w .(s(x, y, z))=0$
D. Bharathi', D. Eswara $\mathrm{rao}^{2^{*}}$, D. Sarada ${ }^{2}$ and M. Muni rathnam ${ }^{2} /$ Simple Right Alternative rings with $(x y) z=(x z) y / R J P A-3(4)$, April-2013.
\Rightarrow ws. $(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{w} .(\mathrm{s}(\mathrm{x}, \mathrm{y}, \mathrm{z}))=0$
$\Rightarrow \mathrm{ws} \in S$. Hence S is an ideal of R .
Theorem: If R is a simple right alternative ring with $(x y) z=(x z) y$, then R is alternative.
Proof: From lemmas (3) and (4) we have all (x, x, y) \mathcal{S}.
Since S is an ideal of R and R is simple, either $S=R$ or $S=0$. If $S=R$ then R is associative.
But R is not associative.
Hence $\mathrm{S}=0$ and R is alternative.

REFERENCES

[1]. Kleinfeld,E.and Smith,H.F.: "Right alternative algebras with commutators in a nucleus", Bull. Austral. Math"' Soc., 46 (1992), 81-90.
[2]. Kleinfeld,E. and Smith,H.F.: "prime rings in the join of alternative and ($-1,1$) rings," contemporary Mathematics, Vol. 131 (1992), 613-623.

Source of support: Nil, Conflict of interest: None Declared

[^0]: * Corresponding author: D. Eswara rao ${ }^{2 *}$
 ${ }^{2}$ Dept of mathematics, S. V. University, Tirupati, India

